Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T11:38:04.839Z Has data issue: false hasContentIssue false

Synopsis of gastropod-associated nematodes of Ciscaucasia (Russian Federation) with the description of a new species of Pellioditis Dougherty, 1953 (syn. Phasmarhabditis Andrássy, 1976)

Published online by Cambridge University Press:  01 December 2023

E.S. Ivanova*
Affiliation:
Centre of Parasitology of A.N. Severtsov Institute of Ecology and Evolution RAS, Leninskii prospect 33, 119071 Moscow, Russia
S.E. Spiridonov
Affiliation:
Centre of Parasitology of A.N. Severtsov Institute of Ecology and Evolution RAS, Leninskii prospect 33, 119071 Moscow, Russia
*
Corresponding author: E.S. Ivanova; Email: elena_s_ivanova@rambler.ru

Abstract

Caucasus is known as one of the few biodiversity hotspots in Europe and is characterised by rich gastropod fauna while the nematode fauna in association with gastropods has remained largely understudied. Surveys conducted in 2019 and 2021 in the North Caucasus of the Russian Federation (Stavropol Upland and western and central parts of Krasnodar Krai) has revealed the presence of three new species of Pellioditis, a facultative parasite of land gastropods, and two species of obligate parasites, the intestinal parasite Angiostoma kimmeriense and a new, still undescribed species of a larval ectoparasite Alloionema sp. The new associations of Cruznema sp. and Rhabditophanes sp. with land gastropods were recorded for the first time in the Russian Federation. The new species of Pellioditis Dougherty, 1953 described here is based on the analysis of morphology and molecular studies of two distant and morphologically distinct strains, thermalis and sindicae. Pellioditis thermalis n. sp. was characterised by females possessing a tail of about 95–100 μm long, broadly conical in shape in the thermalis and sindicae strains, with a rounded anterior part and a subulate terminal part as long as the former; prominent phasmids located at the mid-tail, equatorial vulva position, a lateral field of three ridges (four incisions), males with spicules featuring a hole at the distal tip, ensheathed infective juveniles with average length 717 μm in the thermals strain and 771 μm in the sindicae strain, and exsheathed ones 644 μm and 682 μm, respectively. ITS-based phylogenetic analyses revealed that all Pellioditis species found in Ciscaucasia and Transcaucasia probably belong to two separate clades, with independent evolutionary histories of colonisation of this area. The entire Caucasus range area appears to serve as a biodiversity hotspot for the genus Pellioditis, presumably due to its complicated geological history and repeated isolation events for its terrestrial mollusc hosts.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrássy, I (1976). Evolution as a Basis for the Systematization of Nematodes. Lincoln, UK: Pitman Publishing.Google Scholar
Andrássy, I (1983). A taxonomic review of the suborder Rhabditina (Nematoda: Secernentea). Paris, France: O.R.S.T.O.M.Google Scholar
Andrus, P, Rae, R (2019). Development of Phasmarhabditis hermaphrodita (and members of the Phasmarhabditis genus) as new genetic model nematodes to study the genetic basis of parasitism. Journal of Helminthology 93, 3, 319331. doi: 10.1017/S0022149X18000305CrossRefGoogle Scholar
Andrus, PS, Rae, R, Wade, CM (2022). Nematodes and trematodes associated with terrestrial gastropods in Nottingham, England. Journal of Helminthology 96, e81. doi: 10.1017/S0022149X22000645CrossRefGoogle ScholarPubMed
Azzam, KM (2003). Description of nematode Phasmarhabditis tawfiki n. sp. isolated from Egyptian terrestrial snails and slugs. Journal of the Egyptian German Society of Zoology 42, 7987.Google Scholar
Azzam, KM, El-Abd, N (2021). First record of Phasmarhabditis sp. from eggs of Eobania vermiculata (Müller) snails in Egypt and their response to host size. Egyptian Journal of Biological Pest Control 31, 722728. doi: 10.1186/s41938-021-00389-3CrossRefGoogle Scholar
Azzam, KM (2023). Phasmarhabditis eagyptiaca n. sp. (Nematoda: Rhabditida) Isolated from Egyptian Terrestrial gastropods and its Role as Control Bio-agent Acta Parasitologica 68, 3, 637650. doi: 10.1007/s11686-023-00694-xCrossRefGoogle Scholar
Blaxter, ML, De Ley, P, Garey, JR, Liu, LX, Scheldemann, P, Vierstraete, A, Vanfleteren, JR, Mackey, LY, Dorris, M, Frisse, LM, Vida, JT, Thomas, WK (1998). A molecular evolutionary framework for the phylum Nematoda. Nature 392, 6671, 7175. doi: 10.1038/32160CrossRefGoogle ScholarPubMed
Brophy, T, Howe, DK, Denver, DR, Luong, LT (2020). First report of a gastropod parasitic nematode Phasmarhabditis californica (Nematoda: Rhabditidae) in Alberta, Canada. Journal of Nematology 52, e202092. doi: 10.21307/jofnem-2020-092CrossRefGoogle ScholarPubMed
Carnaghi, M, Rae, R, Tandingan De Ley, I, Johnston, E, Kindermann, G, Mc Donnell, R, O ’Hanlon, A, Reich, I, Sheahan, J, Williams, CD, Gormally, MJ (2017). Nematode associates and susceptibility of a protected slug (Geomalacus maculosus) to four biocontrol nematodes. Biocontrol Science and Technology 27, 294299.CrossRefGoogle Scholar
Eichwald, E (1841). Fauna Caspio-Caucasia nonnullis observationibus novis. Nouveaux Mémoires de la Société Impériale des Naturalistes de Moscou 7, 1290.Google Scholar
Eichwald, E (1829). Zoologia Specialis quam expositis animalibus tum vivis, tum fossilibus potissimum Rossiae in universum, et Poloniae in specie, in usum lectionum publicarum in Universitate Caesarea Vilnensi habendarum. Pars prior. Propaedeuticam Zoologiae atque specialem Heterozoorum expositionem continens. J. Zawadzki, Vilnae, vi + 314 pp., pls 15.Google Scholar
France, A, Gerding, M (2000). Discovery of Phasmarhabditis hermaphrodita in Chile and its pathological differences with the U.K. isolate in slug control. Journal of Nematology 32, 430.Google Scholar
Genena, MAM, Mostafa, FAM, Fouly, AH, Yousef, AA (2011). First record for the slug parasitic nematode, Phasmarhabditis hermaphrodita (Schneider) in Egypt. Archives of Phytopathology and Plant Protection 44, 4, 340345. doi: 10.1080/03235400903057662CrossRefGoogle Scholar
Gorgadze, O, Troccoli, A, Fanelli, E, Tarasco, E, De Luca, F (2022). Phasmarhabditis thesamica n. sp. (Nematoda: Rhabditidae), a new slug nematode from southern slope of Caucasus, Georgia. Nematology, 24, 6, 617629. doi: 10.1163/15685411-bja10154CrossRefGoogle Scholar
Hausdorf, B (2000). The genus Monacha in the Western Caucasus (Gastropoda: Hygromiidae). Journal of Natural History, 34, 8, 15751594. doi: 10.1080/00222930050117495CrossRefGoogle Scholar
Hausdorf, B (2001). A systematic revision of Circassina from the Western Caucasus region (Gastropoda:Hygromiidae). Journal of Molluscan Studies, 67, 4, 425446. doi: 10.1093/mollus/67.4.425CrossRefGoogle Scholar
Holovachov, O, Bostrom, S, Tandingan De Ley, I, Mc Donnell, RJ, Alvarado, S, Paine, TD, De Ley, P (2016). Alloionema similis n. sp., a genetically divergent sibling species of A. appendiculatum Schneider, 1859 (Rhabditida: Alloionematidae) from invasive slugs in California, USA. Systematic Parasitology 93, 9, 877898. doi: 10.1007/s11230-016-9668-2CrossRefGoogle Scholar
Holterman, M, Van der Wurff, A, Van den Elsen, S, Van Megen, H, Bongers, T, Holovachov, O, Bakker, J, Helder, J (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution towards crown clades. Molecular Biology and Evolution 23, 9, 17921800. doi: 10.1093/molbev/msl044CrossRefGoogle Scholar
Howe, DK, Ha, AD, Colton, A, Tandingan De Ley, I, Rae, RG, Ross, J, Wilson, M, Nermut, J, Zhao, Z, Mc Donnell, RJ, Denver, DR (2020). Phylogenetic evidence for the invasion of a commercialized European Phasmarhabditis hermaphrodita lineage into North America and New Zealand. PLoS One 15, 8, e237249. doi: 10.1371/journal.pone.0237249CrossRefGoogle ScholarPubMed
Huang, R-E, Ye, W, Ren, X, Zhao, Z (2015). Morphological and molecular characterization of Phasmarhabditis huizhouensis sp. nov. (Nematoda: Rhabditidae), a new rhabditid nematode from South China. PLoS ONE 10, 12, e0144386. doi: 10.1371/journal.pone.0144386CrossRefGoogle ScholarPubMed
Huang, R-E, Li, R, Zhao, Z (2016). Discovery of a free-living nematode phylogenetically related to vertebrate parasites of the genus Strongyloides (Nematoda: Strongyloidoidea): morphological, anatomical and molecular characterisation. Invertebrate Systematics 30, 4, 387397. doi: 10.1071/IS15048CrossRefGoogle Scholar
Ivanova, ES, Panayotova-Pencheva, MS, Spiridonov, SE (2013). Observations on the nematode fauna of terrestrial molluscs of the Sofia area (Bulgaria) and the Crimea peninsula (Ukraine). Russian Journal of Nematology, 21, 1, 4149.Google Scholar
Ivanova, ES, Spiridonov, SE (2017). Phasmarhabditis meridionalis n. sp. (Nematoda: Rhabditidae) from a land snail Quantula striata (Gastropoda: Dyakiidae) from Southern Vietnam. Russian Journal of Nematology 25, 2, 129140.Google Scholar
Ivanova, ES, Spiridonov, SE (2018). Angiostoma meets Phasmarhabditis: a case of Angiostoma kimmeriense Korol & Spiridonov, 1991. Russian Journal of Nematology 26, 7785.Google Scholar
Ivanova, E, Clausi, M, Sparacio, I, Spiridonov, S (2019). Preliminary data on the parasite survey of terrestrial gastropods of Sicily. Russian Journal of Nematology 27, 1, 3745.Google Scholar
Ivanova, ES, Geraskina, AP, Spiridonov, SE (2020). Two new species of Phasmarhabditis Andrássy, 1976 (Nematoda: Rhabditidae) associated with land snails in Northwest Caucasus, Russian Federation: description and molecular affiliation. Nematology 22, 2, 179197. doi: 10.1163/15685411-00003299CrossRefGoogle Scholar
Ivanova, ES, Gorgadze, OA, Lortkhipanidze, M, Spiridonov, SE (2021). Phasmarhabditis akhaldaba n. sp. associated with a slug Deroceras reticulatum in Lesser Caucasus mountains in Republic of Georgia. Russian Journal of Nematology 29, 1, 7588.Google Scholar
Ivanova, ES, Spiridonov, SE (2022). Phasmarhabditis quinamensis n. sp. (Nematoda: Rhabditidae) from tropical terrestrial gastropods in southern Vietnam. Nematology 24, 2, 225239. doi: 10.1163/15685411-bja10126CrossRefGoogle Scholar
Ivanova, ES, Mazakina, VV, Spiridonov, SE (2022). Invasive alien slug Arion vulgaris Moquin‑Tandon, 1855 (Gastropoda: Pulmonata: Arionidae) in Moscow parks and its co‑introduced parasite Alloionema appendiculatum Schneider, 1859. Acta Parasitologica 67, 2, 921931. doi: 10.1007/s11686-022-00541-5CrossRefGoogle ScholarPubMed
Ivanova, ES, Clausi, M, Leone, D, Spiridonov, SE (2023). Phasmarhabditis villasmundi sp. n. infecting land gastropods in the Nature Reserve ‘Speleological Complex Villasmundo – S. Alfio’ in Syracuse Province, Sicily. Nematology 25, 2, 169180. doi: 10.1163/15685411-bja10212Google Scholar
Kaleniczenko, J (1851). Description d’un nouveau genre de Limaces de la Russie méridionale. Bulletin de la Société Impériale des Naturalistes de Moscou. 24, 215228.Google Scholar
Kanzaki, N, Futai, K (2002). A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within the xylophilus group. Nematology 4, 1, 3541. doi: 10.1163/156854102760082186CrossRefGoogle Scholar
Karimi, J, Kharazi-Pakadel, A, Robert, SJ (2003). Report of pathogenic nematodes of slugs, Phasmarhabditis hermaphrodita (Nematoda: Rhabditida) in Iran. Journal of Entomological Society of Iran 22, 7778.Google Scholar
Kobelt, W (1881). Illustrirtes Cochylienbuch. Zweiter Band. Nürnberg.Google Scholar
Korol, EN, Spiridonov, SE (1991). Angiostoma kimmeriensis n. sp. and Agfa taurica n. sp. – parasitic Rhabditida (Nematoda) from Crimean terrestrial mollusks. Helminthologia 28, 179182.Google Scholar
Keyte, M, Grannel, A, Sheehy, L, Shepherd, J, Rae, R (2022). Phasmarhabditis californica in Germany. Nematology 24, 4, 475480. doi: 10.1163/15685411-bja10146CrossRefGoogle Scholar
Kumar, S, Stecher, G, Li, M, Knyaz, C, Tamura, K (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 6, 15471549. doi: 10.1093/molbev/msy096CrossRefGoogle ScholarPubMed
Laznik, Ž, Majić, I, Stanislav Trdan, S, Malan, AP, Pieterse, A, Ross, JL (2020). Is Phasmarhabditis papillosa (Nematoda: Rhabditidae) a possible biological control agent against the Spanish slug, Arion vulgaris (Gastropoda: Arionidae)? Nematology 23, 5, 577585. doi: 10.1163/15685411-bja10063CrossRefGoogle Scholar
Lindholm, WA (1913). Ueber ein neues Subgenus der Gattung Clausiliia Drap. Nachrichtsblatt der Deutschen Malakozoologischen Geselschaft 45, 2426.Google Scholar
Linnaeus, C (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Holmiae [= Stockholm]: L. Salvii, 824 pp.Google Scholar
Maupas, É (1919). Essais d’hybridation chez des nématodes. Bulletin Biologique de la France et de la Belgique 52, 466498.Google Scholar
Mc Donnell, RJ, Colton, AJ, Howe, DK, Denver, DR (2020). Lethality of four species of Phasmarhabditis (Nematoda: Rhabditidae) to the invasive slug, Deroceras reticulatum (Gastropoda: Agriolimacidae) in laboratory infectivity trials. Biological Control 150, e104349. doi: 10.1016/j.biocontrol.2020.104349CrossRefGoogle Scholar
Medlin, L, Elwood, HJ, Stickel, S, Sogin, ML (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 2, 491499. doi: 10.1016/0378-1119(88)90066-2CrossRefGoogle ScholarPubMed
Mengert, H (1953). Nematoden und Schneken. Zeitschrift fur Morphologie und Ökologie der Tiere 41, 311349.CrossRefGoogle Scholar
Menke, KT (1828). Synopsis methodica molluscorum generum omnium et specierum earum, quae in Museo Menkeano adservantur; cum synonymia critica et novarum specierum diagnosibus. XII + 91 pp.CrossRefGoogle Scholar
Morand, S (1988). Contribution à l’étude d’un système hôtes-parasites: Nématodes associés à quelques Mollusques terrestres. Thèse Université Rennes I.Google Scholar
Mortillet, G (1854). Descriptions de quelques coquilles nouvelles d’Arménie, et considérations malacostatiques. Mémoires de l’Institut National Genevois 2, 515.Google Scholar
Mumladze, L, Cameron, RAD, Pokryszko, BM (2014). Endemic land molluscs in Georgia (Caucasus): how well are they protected by existing reserves and national parks? Journal of Molluscan Studies, 80, 1, 6773. doi: 10.1093/mollus/eyt047CrossRefGoogle Scholar
Müller, OF (1774). Vermium terrestrium et fluviatilium, seuanimalium infusoriorum, helminthicorum, et testace-orum, non marinorum, succincta historia. 2. Havniae etLipsiae.Google Scholar
Neiber, MT, Hausdorf, B (2015). Phylogeography of the land snail genus Circassina (Gastropoda: Hygromiidae) implies multiple Pleistocene refugia in the western Caucasus region. Molecular Phylogenetics and Evolution 93, 129142. doi: 10.1016/j.ympev.2015.07.012CrossRefGoogle ScholarPubMed
Neiber, MT, Walther, F, Hausdorf, B (2017). Phylogeny and reclassification of the Caucasigenini radiation from the Caucasus region (Gastropoda, Hygromiidae). Zoologica scripta 47, 5462. doi: 10.1111/zsc.12259CrossRefGoogle Scholar
Neiber, MT, Walther, F, Kijashko, PV, Mumladze, L, Hausdorf, B (2022). The role of Anatolia in the origin of the Caucasus biodiversity hotspot illustrated by land snails in the genus Oxychilus. Cladistics 38, 1, 83102. doi: 10.1111/cla.12479CrossRefGoogle ScholarPubMed
Nermuť, J, Půža, V, Mráček, Z (2014). The effect of different growing substrates on the development and quality of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae). Biocontrol Science and Technology 24, 9, 10261038. doi: 10.1080/09583157.2014.915926CrossRefGoogle Scholar
Nermut’, J, Půža, V, Mráček, Z (2016a). Phasmarhabditis apuliae n. sp. (Nematoda: Rhabditidae), a new rhabditid nematode from milacid slugs. Nematology 18, 9, 10951112. doi: 10.1163/15685411-00003017CrossRefGoogle Scholar
Nermut’, J, Půža, V, Mekete, T, Mráček, Z (2016b). Phasmarhabditis bonaquaense n. sp. (Nematoda: Rhabditidae), a new slug-parasitic nematode from the Czech Republic. Zootaxa 4179, 3, 530546. doi: 10.11646/zootaxa.4179.3.8Google Scholar
Nermut’, J, Půža, V, Mekete, T, Mráček, Z (2017). Phasmarhabditis bohemica n. sp. (Nematoda: Rhabditidae), a slug-parasitic nematode from the Czech Republic. Nematology 19, 1, 93107. doi: 10.1163/15685411-00003034CrossRefGoogle Scholar
Nermut’, J, Půźa, V, Mraček, Z (2015). Re-description of the slugparasitic nematode Alloionema appendiculatum Schneider, 1859 (Rhabditida: Alloionematidae). Nematology 17, 897910. doi: 10.1163/15685411-00002911CrossRefGoogle Scholar
Nikishin, AM, Ershov, AV, Nikishin, VA (2010). Geological history of Western Caucasus and adjacent foredeeps based on analysis of the regional balanced section. Doklady Akademii Nauk Earth Sciences 430, 515517. doi: 10.1134/S1028334X10020017Google Scholar
Nunn, GB (1992). Nematode molecular evolution. Ph.D. Dissertation, University of Nottingham, Nottingham, UK.Google Scholar
Osche, G (1952). Systematik und Phylogenie der Gattung Rhabditis (Nematoda). Zoologische Jahrbücher Abteilung für Systematik. Ökologie und Geographie der Tiere 81, 190280.Google Scholar
Pfeiffer, L (1847). Diagnosen neuer Heliceen. Zeitschrift für Malakozoologie 4, 6571.Google Scholar
Pfeiffer, L (1859). Nachträge zum zweiten Supplemente meiner Monographia Heliceorum (Fortsetzung). Malakozoologische Blätter 6, 1953.Google Scholar
Pieterse, A, Tiedt, LR, Malan, AP, Ross, JL (2017). First record of Phasmarhabditis papillosa (Nematoda: Rhabditidae) in South Africa, and its virulence against the invasive slug, Deroceras panormitanum. Nematology 19, 12, 10351050. doi: 10.1163/15685411-00003105CrossRefGoogle Scholar
Pieterse, A, Rowson, B, Tiedt, L, Malan, AP, Haukeland, S, Ross, JL (2020). Phasmarhabditis kenyaensis n. Polytoxon robustum, in Kenya. Nematology 23, 2, 229245. doi: 10.1163/15685411-bja10040CrossRefGoogle Scholar
Ross, JL, Pieterse, A, Malan, AP, Ivanova, E (2018). Phasmarhabditis safricana n. sp. (Nematoda: Rhabditidae), a parasite of the slug Deroceras reticulatum from South Africa. Zootaxa 4420, 3, 391404. doi: 10.11646/zootaxa.4420.3.5CrossRefGoogle Scholar
Rossmässler, EA (1838). Iconographie der Land- und Süßwassermollusken, mit vorzüglicher Berücksichtigung der europäischen noch nicht abgebildeten ArtenDresden, Leipzig.Google Scholar
Schneider, AF (1859). Über eine Nematodenlarve und gewisse Verscheidenheiten in den 394 Geschlechtsorganen der Nematoden. Zeitschrift für wissenschaftliche Zoologi 10, 176178.Google Scholar
Schneider, A (1866). Monografie der Nematoden. Berlin, Germany: Verlag von Georg Reimer.Google Scholar
Schurkman, J, Tandingan De Ley, I, Anesko, K, Paine, T, Mc Donnell, R, Dillman, AR (2022). Distribution of Phasmarhabditis (Nematode: Rhabditidae) and their gastropod hosts in California plant nurseries and garden centers. Frontiers in Plant Science 13, Article 856863. doi: 10.3389/fpls.2022.856863CrossRefGoogle ScholarPubMed
Seinhorst, JW (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4, 1, 6769. doi: 10.1163/187529259X00381CrossRefGoogle Scholar
Shinohara, T (1960). [Studies on Rhabditis (Nematoda, Rhabditidae).] Journal of the Kurume Medical Association 23, 27772819. (In Japanese).Google Scholar
Shinohara, T, Yokoo, T (1958). [On a new Rhabditis species (Nematoda: Rhabditidae) found in the alimentary organs of Incilaria confusa (Cockerell) in Japan.] Journal of the Kurume Medical Association 21, 25802583. (In Japanese).Google Scholar
Simroth, H (1901). Die Nacktschnecken des Russischen Reiches. St. Petersburg.Google Scholar
Singh, PR, Couvreur, M, Decraemer, W, Bert, W (2019). Survey of slug-parasitic nematodes in East and West Flanders, Belgium and description of Angiostoma gandavensis n. sp. (Nematoda: Angiostomidae) from arionid slugs. Journal of Helminthology 94, e35. doi: 10.1017/S0022149X19000105CrossRefGoogle Scholar
Sudhaus, W (2011). Phylogenetic systematisation and catalogue of paraphyletic “Rhabditidae” (Secernentea, Nematoda). Journal of Nematode Morphology and Systematics 14, 2, 113178.Google Scholar
Sudhaus, W (2023). An update of the catalogue of paraphyletic ’Rhabditidae’ (Nematoda) after eleven years. Soil Organisms 95, 1, 95116. doi: 10.25674/so95iss1id312Google Scholar
Tandigan de Ley, I, Mc Donnel, R, Lopez, S, Paine, TD, de Ley, P (2014). Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae), a potential biocontrol agent isolated for the first time from invasive slugs in North America. Nematology 16, 10, 11291138. doi: 10.1163/15685411-00002838CrossRefGoogle Scholar
Tandingan De Ley, I, Holovachov, O, Mc Donnell, RJ, Bert, W, Paine, W, De Ley, P (2016). Description of Phasmarhabditis californica n. sp. and first report of P. papillosa (Nematoda: Rhabditidae) from invasive slugs in the USA. Nematology 18, 2, 175193. doi: 10.1163/15685411-00002952CrossRefGoogle Scholar
Tandingan De Ley, I, Kiontke, K, Bert, W, Sudhaus, W, Fitch, DHA (2023). Pellioditis pelhami n. sp. (Nematoda: Rhabditidae) and Pellioditis pellio (Schneider, 1866), earthworm associates from different subclades within Pellioditis (syn. Phasmarhabditis Andrássy, 1976) PLOS ONE 18, 9, e0288196. doi: 10.1101/2023.06.22.546148CrossRefGoogle Scholar
Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG (1997). The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 24, 48764882. doi: 10.1093/nar/25.24.4876CrossRefGoogle ScholarPubMed
Trifinopoulos, J, Nguyen, L-T, von Haeseler, A, Minh, BQ (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44, W1, W232W235. doi: 10.1093/nar/gkw256CrossRefGoogle ScholarPubMed
Waki, T, Sawahata, T (2019). Infection of slugs with Phasmarhabditis nematodes at several locations in Japan. Taxa, Proceeding of Japanese Society of Systematic Zoology 47, 2329. doi: 10.19004/taxa.47.0_23Google Scholar
Walther, F, Kijashko, P, Harutyunova, L, Mumladze, L, Neiber, MT, Hausdorf, B (2014). Biogeography of the land snails of the Caucasus region. Tentacle 22, 35.Google Scholar
Williams, L, Zazanashvili, N, Sanadiradze, G, Kandaurov, A (Eds.) (2006). An Ecoregional Conservation Plan for the Caucasus. Tbilisi: Contour Ltd.Google Scholar
Wilson, MJ, Glen, DM, Pearce, JD, Rodgers, PB (1995). Monoxenic culture of the slug parasite Phasmarhabditis hermaphrodita (Nematoda, Rhabditidae) with different bacteria in liquid and solid-phase. Fundamental and Applied Nematology 18, 159166.Google Scholar
Wilson, MJ, Burch, G, Tourna, M, Aalders, LT, Barker, GM (2012). The potential of a New Zealand strain of Phasmarhabditis hermaphrodita for biological control of slugs. New Zealand Plant Protection 65, 161165. doi: 10.30843/nzpp.2012.65.5388CrossRefGoogle Scholar
Wilson, MJ, Wilson, DJ, Aalders, LT, Tourna, M (2016). Testing a new low-labour method for detecting the presence of Phasmarhabditis spp. in slugs in New Zealand. Nematology 18, 8, 925931. doi: 10.1163/15685411-00003005CrossRefGoogle Scholar
Zhang, C-N, Liu, Q-Z (2020). Phasmarhabditis zhejiangensis sp. nov. (Nematoda: Rhabditidae), a new rhabditid nematode from Zhejiang, China. PLoS ONE 15, 11, e0241413. doi: 10.1371/journal.pone.0241413CrossRefGoogle ScholarPubMed