Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T05:02:29.022Z Has data issue: false hasContentIssue false

On the effective, nef, and semi-ample monoids of blowups of Hirzebruch surfaces at collinear points

Published online by Cambridge University Press:  11 April 2023

Brenda Leticia de la Rosa-Navarro*
Affiliation:
Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Mexico
Juan Bosco Frías-Medina
Affiliation:
Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico e-mail:juan.frias@umich.mx mustapha.lahyane@umich.mx
Mustapha Lahyane
Affiliation:
Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico e-mail:juan.frias@umich.mx mustapha.lahyane@umich.mx

Abstract

This paper is devoted to determine the geometry of a class of smooth projective rational surfaces whose minimal models are the Hirzebruch ones; concretely, they are obtained as the blowup of a Hirzebruch surface at collinear points. Explicit descriptions of their effective monoids are given, and we present a decomposition for every effective class. Such decomposition is used to confirm the effectiveness of some divisor classes when the Riemann–Roch theorem does not give information about their effectiveness. Furthermore, we study the nef divisor classes on such surfaces. We provide an explicit description for their nef monoids, and, moreover, we present a decomposition for every nef class. On the other hand, we prove that these surfaces satisfy the anticanonical orthogonal property. As a consequence, the surfaces are Harbourne–Hirschowitz and their Cox rings are finitely generated. Finally, we prove that the complete linear system associated with any nef divisor is base-point-free; thus, the semi-ample and nef monoids coincide. The base field is assumed to be algebraically closed of arbitrary characteristic.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dedicated to Professor Brian Harbourne on the occasion of his 65th birthday

Juan Bosco Frías-Medina is supported by the “Programa de Estancias Posdoctorales por México Convocatoria 2022 de CONACYT,” and Mustapha Lahyane acknowledges a partial support from the Coordinación de la Investigación Científica de la Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) during 2022.

References

Artebani, M. and Laface, A., Cox rings of surfaces and the anticanonical Iitaka dimension. Adv. Math. 226(2011), no. 6, 52525267.CrossRefGoogle Scholar
Berchtold, F. and Hausen, J., Cox rings and combinatorics. Trans. Amer. Math. Soc. 359(2007), no. 3, 12051252.CrossRefGoogle Scholar
Campillo, A., Piltant, O., and Reguera, A., Cones of curves and of line bundles at infinity. J. Algebra 293(2005), 503542.CrossRefGoogle Scholar
Campillo, A., Piltant, O., and Reguera-López, A. J., Cones of curves and of line bundles on surfaces associated with curves having one place at infinity. Proc. Lond. Math. Soc. (3) 84(2002), no. 3, 559580.CrossRefGoogle Scholar
Castorena-Martínez, A. and Frías-Medina, J. B., The Harbourne–Hirschowitz condition and the anticanonical orthogonal property for surfaces. J. Korean Math. Soc. 60(2023), no. 2, 359374.Google Scholar
de la Rosa-Navarro, B. L., Frías Medina, J. B., Lahyane, M., Moreno Mejía, I., and Osuna Castro, O., A geometric criterion for the finite generation of the cox ring of projective surfaces. Rev. Mat. Iberoam. 31(2015), no. 4, 11311140.CrossRefGoogle Scholar
de la Rosa-Navarro, B. L., Frías Medina, J. B., Lahyane, M., Moreno Mejía, I., and Osuna Castro, O., Erratum to “A geometric criterion for the finite generation of the cox ring of projective surfaces”. Rev. Mat. Iberoam. 33(2017), no. 1, 375376.CrossRefGoogle Scholar
de la Rosa-Navarro, B. L., Frías-Medina, J. B., and Lahyane, M., Platonic Harbourne–Hirschowitz rational surfaces. Mediterr. J. Math. 17(2020), 121. https://doi.org/10.1007/s00009-020-01593-5Google Scholar
Demazure, M., deDel, S., and Pezzo, I. I., Séminaire Sur les Singularités des surfaces, Springer, Berlin–Heidelberg, 1980, pp. 2369.CrossRefGoogle Scholar
Failla, G., Lahyane, M., and Molica Bisci, G., The finite generation of the monoid of effective divisor classes on platonic rational surfaces. In: Singularity theory: dedicated to Jean-Paul Brasselet on his 60th birthday, Luminy, Marseille, 24–25 February, World Scientific, Singapore, 2005, pp. 565576.Google Scholar
Failla, G., Lahyane, M., and Molica Bisci, G., On the finite generation of the monoid of effective divisor classes on rational surfaces of type $\left(n,m\right)$ . Atti Acc. Pelor. Peric. Classe Sci. Fis., Mat. Nat. 84(2006), pp. 19. https://doi.org/10.1478/C1A0601001Google Scholar
Failla, G., Lahyane, M., and Molica Bisci, G., Rational surfaces of Kodaira type IV. Boll. Unione Mat. Ital. 10–B(2007), no. 3, 741750.Google Scholar
Frías-Medina, J. B. and Lahyane, M., Harbourne–Hirschowitz surfaces whose anticanonical divisors consist only of three irreducible components. Int. J. Math. 29(2018), 1850072. https://doi.org/10.1142/S0129167X18500726CrossRefGoogle Scholar
Frías-Medina, J. B. and Lahyane, M., The effective monoids of the blow-ups of Hirzebruch surfaces at points in general position. Rend. Circ. Mat. Palermo (2) 70(2021), 167197.CrossRefGoogle Scholar
Galindo, C. and Monserrat, F., On the cone of curves and of line bundles of a rational surface. Int. J. Math. 15(2004), no. 4, 393407.CrossRefGoogle Scholar
Galindo, C. and Monserrat, F., The total coordinate ring of a smooth projective surface. J. Algebra 284(2005), 91101.CrossRefGoogle Scholar
Galindo, C. and Monserrat, F., The cone of curves associated to a plane configuration. Comment. Math. Helv. 80(2005), no. 1, 7593.CrossRefGoogle Scholar
Galindo, C. and Monserrat, F., The cone of curves and the cox ring of rational surfaces given by divisorial valuations. Adv. Math. 290(2016), 10401061.CrossRefGoogle Scholar
Galindo, C., Monserrat, F., and Moreno-Ávila, C. J., Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces. Rev. Mat. Complut. 33(2020), 349372.CrossRefGoogle Scholar
Gimigliano, A., Our thin knowledge of fat points . In: The curves seminar at Queen’s. Vol. VI, Queen’s Papers in Pure and Applied Mathematics, 83, Queen’s University, Kingston, ON, 1989, 50 pp.Google Scholar
Harbourne, B., Blowings-up of ${\mathbb{P}}^2$ and their blowings-down . Duke Math. J. 52(1985), no. 1, 129148.CrossRefGoogle Scholar
Harbourne, B., Complete linear systems on rational surfaces . Trans. Amer. Math. Soc. 289(1985), no. 1, 213226.CrossRefGoogle Scholar
Harbourne, B., The geometry of rational surfaces and Hilbert functions of points in the plane . In: Proceedings of the 1984 Vancouver conference in algebraic geometry, Conference Proceedings, Canadian Mathematical Society, 6, American Mathematical Society, Providence, RI, 1986, pp. 95111.Google Scholar
Harbourne, B., Anticanonical rational surfaces . Trans. Amer. Math. Soc. 349(1997), no. 3, 11911208.CrossRefGoogle Scholar
Hartshorne, R., Algebraic geometry, Springer, New York–Heidelberg, 1977.CrossRefGoogle Scholar
Hausen, J., Cox rings and combinatorics II . Mosc. Math. J. 8(2008), no. 4, 711757.CrossRefGoogle Scholar
Hirschowitz, A., Une conjecture pour la cohomologie des diviseurs Sur les surfaces rationnelles génériques . J. Reine Angew. Math. 397(1989), 208213.CrossRefGoogle Scholar
Hu, Y. and Keel, S., Mori dream spaces and GIT . Michigan Math. J. 48(2000), 331348.CrossRefGoogle Scholar
Keum, J. H. and Lee, K. S., Examples of Mori dream surfaces of general type with $pg=0$ . Adv. Math. 347(2019), 708738.CrossRefGoogle Scholar
Lahyane, M., Rational surfaces having only a finite number of exceptional curves . Math. Z. 247(2004), no. 1, 213221.CrossRefGoogle Scholar
Lahyane, M., Exceptional curves on smooth rational surfaces with $-K$ not nef and of self-intersection zero. Proc. Amer. Math. Soc. 133(2005), no. 6, 15931599.CrossRefGoogle Scholar
Lahyane, M., On the finite generation of the effective monoid of rational surfaces . J. Pure Appl. Algebra 214(2010), no. 7, 12171240.CrossRefGoogle Scholar
Lahyane, M. and Harbourne, B., Irreducibility of $-1$ -classes on anticanonical rational surfaces and finite generation of the effective monoid. Pacific J. Math. 218(2005), no. 1, 101114.CrossRefGoogle Scholar
Moreno-Ávila, C. J., Global geometry of surfaces defined by non-positive and negative at infinity valuations. Ph.D. thesis, Universität Jaume I, 2021.Google Scholar
Ottem, J. C., On the Cox ring of ${\mathbb{P}}^2$ blown up in points on a line. Math. Scand. 109(2011), no. 1, 2230.CrossRefGoogle Scholar
Rosoff, J., On the semi-group of effective divisor classes of an algebraic variety: the question of finite generation. Ph.D. thesis, University of California, 1978.Google Scholar
Rosoff, J., Effective divisor classes and blowings-up of ${\mathbb{P}}^2$ . Pacific. J. Math. 89(1980), no. 2, 419429.CrossRefGoogle Scholar
Rosoff, J., Effective divisor classes on a ruled surface. Pacific J. Math. 202(2002), no. 1, 119124.CrossRefGoogle Scholar
Segre, B., Alcune questioni su insiemi finiti di punti in geometria algebrica. Univ. Politec. Torino Rend. Sem. Mat. 20(1960/1961), 6785.Google Scholar
Testa, D., Várilly-Alvarado, A., and Velasco, M., Big rational surfaces. Math. Ann. 351(2011), no. 1, 95107.CrossRefGoogle Scholar