Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T06:52:51.388Z Has data issue: false hasContentIssue false

Addenda to “Correspondence theorems for Hopf algebroids with applications to affine groupoids”

Published online by Cambridge University Press:  27 December 2024

Laiachi El Kaoutit
Affiliation:
Universidad de Granada, Departamento de Álgebra and IMAG. Facultad de Ciencias, Fuente Nueva s/n. E810071 Granada, Spain e-mail: kaoutit@ugr.es URL: http://www.ugr.es/~kaoutit/
Aryan Ghobadi
Affiliation:
Département de Mathématique, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium URL: https://sites.google.com/view/paolo-saracco URL: https://paolo.saracco.web.ulb.be
Paolo Saracco*
Affiliation:
Département de Mathématique, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium URL: https://sites.google.com/view/paolo-saracco URL: https://paolo.saracco.web.ulb.be
Joost Vercruysse
Affiliation:
Département de Mathématique, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium e-mail: joost.vercruysse@ulb.be URL: http://joost.vercruysse.web.ulb.be
Rights & Permissions [Opens in a new window]

Abstract

The proof of Theorem 3.14 contains an unsubstantiated claim. To overcome this problem, we add a hypothesis to the statement of 3.14 and we provide a new valid proof. We adjust Theorem 3.15, Corollary 3.16, Proposition 4.23, Theorem 4.26, Corollary 4.29, and Corollary 4.32 accordingly.

Type
Addendum
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Let $I \subseteq {\mathcal H}$ be a left ideal coideal in a left Hopf algebroid $(A,{\mathcal H})$ and let . In the proof of [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1, Theorem 3.14] there is claimed that the additional condition on $\gamma (B)$ we proved above ensures that $\xi $ of (2.14) is an isomorphism in view of Lemma 3.12. In particular, ${\mathcal K}$ of Theorem 2.11 is an equivalence of categories. Therefore, the morphism $\theta _{\overline {{\mathcal H}}}$ in (3.12) from the proof of Proposition 3.8 is an isomorphism. This argument contains a gap: the condition on $\gamma (B)$ entails that ${\mathcal K}$ is an equivalence between ${}_{B}\mathsf {Mod}$ and , but $\theta _{\overline {{\mathcal H}}}$ is a component of the counit of the adjunction between ${}_{B}\mathsf {Mod}$ and . Thus, the argument provided is not sufficient to conclude that $\theta _{\overline {{\mathcal H}}}$ is an isomorphism.

The following enhanced statement shall replace [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1, Theorem 3.14] and its unsubstantiated proof. For the unexplained notation we refer to [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1].

Theorem 1 Let $(A,{\mathcal H})$ be a left Hopf algebroid such that ${}_{s} {{{\mathcal H}}} = {}_{{A\otimes _{}1^{\mathrm {o}}}}{\mathcal H}$ is A-flat. Let I be a left ideal coideal in ${\mathcal H}$ for which ${\mathcal H} \otimes _{A^{\mathrm {o}}} {{\mathcal H}}^{\mathsf {co}{\frac {{\mathcal H}}{I}}}$ injects into ${\mathcal H} \otimes _{A^{\mathrm {o}}} {\mathcal H}$ and

(1)

is a coequalizer diagram, then $I = {\mathcal H} \big ({{\mathcal H}}^{\mathsf {co}{\frac {{\mathcal H}}{I}}}\big )^+$ , that is to say, $\Phi \Psi (I)=I$ .

Proof Denote by $\beta \colon {\mathcal H} \otimes _{A^{\mathrm {o}}} {\mathcal H} \to {\mathcal H} \otimes _{A} {\mathcal H}, x \otimes _{A^{\mathrm {o}}} y \mapsto \sum x_1 \otimes _{A} x_2y,$ the canonical isomorphism. Under the additional hypotheses on I, the left-most vertical morphism $\zeta $ in the following commutative diagram

is an isomorphism, because both lines are equalizers in the category of vector spaces and $\beta $ is an isomorphism. If, in addition, (1) is a coequalizer, then ${{\mathcal H}/I = {\mathcal H}/{\mathcal H} ({{\mathcal H}}^{\mathsf {co}{\frac {{\mathcal H}}{I}}})^+}$ , because both lines in the commutative diagram

are coequalizers and $\zeta $ is an isomorphism (see also [Reference Saracco2, Proposition 3.2]).

The coequalizer condition in Theorem 1 is a necessary condition whose role has been observed and studied in [Reference Saracco2]. Nevertheless, since we are not able to determine whether it follows from the other hypotheses, we need to add it to the results relying on Theorem 1.

For simplicity’s sake, suppose that ${\mathcal H}$ is a left Hopf algebroid over A such that ${}_{s} {{{\mathcal H}}} = {}_{{A\otimes _{}1^{\mathrm {o}}}}{\mathcal H}$ and ${{\mathcal H}}{}_{t} = {\mathcal H}_{1 \otimes _{}A^{\mathrm {o}}}$ are flat modules. Having in mind the commutative case, this is harmless. Then, [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1, Theorem 3.15 and Corollary 3.16] shall be rephrased as follows.

Theorem 2 We have a well-defined inclusion-preserving bijective correspondence

(2)

Corollary 3 (2) restricts to a well-defined inclusion-preserving bijective correspondence

Now, by moving to the commutative case, adding the coequalizer condition (1) to [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1, Proposition 4.23, Theorem 4.26, and Corollaries 4.29 and 4.32] results in the following statements. The proofs can be taken verbatim from [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1].

Proposition 4 [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1, Proposition 4.23]

If $(A,{\mathcal H})$ is a commutative Hopf algebroid and ${}_{s} {{{\mathcal H}}}$ is A-flat, then we have a well-defined inclusion-preserving bijective correspondence

Theorem 5 [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1, Theorem 4.26]

If $(A,{\mathcal H})$ is a commutative Hopf algebroid and ${}_{s} {{{\mathcal H}}}$ is A-flat, then we have a well-defined inclusion-preserving bijective correspondence

Corollary 6 [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1, Corollary 4.29]

Let $(A, {\mathcal H})$ be a commutative Hopf algebroid such that ${}_{s} {{{\mathcal H}}}$ is A-flat and let $I\subseteq {\mathcal H}$ be a normal Hopf ideal such that ${\mathcal H}$ is pure over ${{{\mathcal H}}{}^{I}}$ and (1) is a coequalizer. Denote by $\phi \colon {{{\mathcal H}}{}^{I}} \to {\mathcal H}$ the inclusion. Then the canonical morphism

$$\begin{align*}\Psi_R \colon {\displaystyle\frac{\mathscr{G}_{\mathcal H}(R)}{\mathscr{G}_{{\mathcal H}/I}(R)}} \to \mathrm{CAlg}_{{\mathbb {k}}}({{{\mathcal H}}{}^{I}}, R), \qquad \mathscr{G}_{{\mathcal H}/I}(R)\bullet g \mapsto \Phi_R(g), \end{align*}$$

of [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1, Lemma 4.22] is injective for every $R \in \mathrm {CAlg}_{{\mathbb {k}}}$ . That is to say, the kernel of the morphism $\Phi _R \colon \mathrm {CAlg}_{{\mathbb {k}}}({\mathcal H},R) \to \mathrm {CAlg}_{{\mathbb {k}}}({{{\mathcal H}}{}^{I}}, R)$ induced by $\phi $ is exactly $\mathrm {CAlg}_{{\mathbb {k}}}({\mathcal H}/I,R)$ .

Corollary 7 [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1, Corollary 4.32]

Suppose that ${\mathbb {k}}$ is an algebraically closed field. Let I be a normal Hopf ideal of the commutative Hopf algebroid $(A,{\mathcal H})$ such that ${}_{s} {{{\mathcal H}}}$ is A-flat and ${\mathcal H}$ is pure over ${{\mathcal H}}^{\mathsf {co}{\frac {{\mathcal H}}{I}}}$ and (1) is a coequalizer. Then the ${\mathbb {k}}$ -component $\Psi _{{\mathbb {k}}}$ of the canonical morphism from [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1, Lemma 4.22] is an isomorphism. That is to say, $\mathscr {G}_{\mathcal H}({\mathbb {k}})/\mathscr {G}_{{\mathcal H}/I}({\mathbb {k}}) \ \cong \ \mathscr {G}_{{{{\mathcal H}}{}^{I}}}({\mathbb {k}})$ .

It is noteworthy that [Reference Ghobadi, El Kaoutit, Saracco and Vercruysse1, Example 4.27] is still providing a valid description of the bijective correspondence in the finite groupoid case: any normal Hopf ideal in the Hopf algebroid of functions on a finite groupoid satisfies the coequalizer condition (1), roughly because the corresponding subgroupoid ${\mathcal G}_1 \setminus S_1$ is the equalizer of the arrows corresponding to $\varepsilon \otimes _{{\mathbb {k}}({\mathcal G}_0)} {\mathbb {k}}({\mathcal G}_1),{\mathbb {k}}({\mathcal G}_1) \otimes _{{\mathbb {k}}({\mathcal G}_0)} \varepsilon \colon {\mathbb {k}}({\mathcal G}_1) \square ^{{\mathbb {k}}({\mathcal G}_1\setminus S_1)} {\mathbb {k}}({\mathcal G}_1) \to {\mathbb {k}}({\mathcal G}_1)$ .

References

Ghobadi, A., El Kaoutit, L., Saracco, P., and Vercruysse, J., Correspondence theorems for Hopf algebroids with applications to affine groupoids . Canad. J. Math. 76(2024), no. 3, 830880.Google Scholar
Saracco, P., A remark on the Galois-type correspondence between ideal coideals and comodule subrings of a Hopf algebroid . Bull. Belg. Math. Soc. Simon Stevin 30(2023), no. 5, 668682.CrossRefGoogle Scholar