Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T22:11:00.298Z Has data issue: false hasContentIssue false

Probiotics and prebiotics: potential prevention and therapeutic target for nutritional management of COVID-19?

Published online by Cambridge University Press:  20 October 2021

Kamila Sabino Batista
Affiliation:
Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
Juliana Gondim de Albuquerque
Affiliation:
Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil Post Graduate Program in Nutrition Sciences, Federal University of Pernambuco (UFPE), Cidade Universitária s/n, Recife, Brazil Post Graduate in Biotechnology, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana (UAM), Ciudad de Mexico, Mexico
Maria Helena Araújo de Vasconcelos
Affiliation:
Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
Maria Luiza Rolim Bezerra
Affiliation:
Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
Mariany Bernardino da Silva Barbalho
Affiliation:
Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
Rafael Oliveira Pinheiro
Affiliation:
Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
Jailane de Souza Aquino*
Affiliation:
Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
*
*Corresponding author: Jailane de Souza Aquino, fax +55 83 3216 7499, email aquinojailane@gmail.com

Abstract

Scientists are working to identify prevention/treatment methods and clinical outcomes of coronavirus disease 2019 (COVID-19). Nutritional status and diet have a major impact on the COVID-19 disease process, mainly because of the bidirectional interaction between gut microbiota and lung, that is, the gut–lung axis. Individuals with inadequate nutritional status have a pre-existing imbalance in the gut microbiota and immunity as seen in obesity, diabetes, hypertension and other chronic diseases. Communication between the gut microbiota and lungs or other organs and systems may trigger worse clinical outcomes in viral respiratory infections. Thus, this review addresses new insights into the use of probiotics and prebiotics as a preventive nutritional strategy in managing respiratory infections such as COVID-19 and highlighting their anti-inflammatory effects against the main signs and symptoms associated with COVID-19. Literature search was performed through PubMed, Cochrane Library, Scopus and Web of Science databases; relevant clinical articles were included. Significant randomised clinical trials suggest that specific probiotics and/or prebiotics reduce diarrhoea, abdominal pain, vomiting, headache, cough, sore throat, fever, and viral infection complications such as acute respiratory distress syndrome. These beneficial effects are linked with modulation of the microbiota, products of microbial metabolism with antiviral activity, and immune-regulatory properties of specific probiotics and prebiotics through Treg cell production and function. There is a need to conduct clinical and pre-clinical trials to assess the combined effect of consuming these components and undergoing current therapies for COVID-19.

Type
Review Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cucinotta, D & Vanelli, M (2020) WHO declares COVID-19 a pandemic. Acta Biomed 91, 157160.Google ScholarPubMed
Böhmer, MM, Buchholz, U, Corman, VM, et al. (2020) Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series. Lancet Infect 20, 920928.10.1016/S1473-3099(20)30314-5CrossRefGoogle ScholarPubMed
Wong, SH, Lui, RN & Sung, JJ (2020) Covid-19 and the digestive system. J Gastroenterol Hepatol 35, 744748.10.1111/jgh.15047CrossRefGoogle ScholarPubMed
Zheng, Y-Y, Ma, Y-T, Zhang, J-Y, et al. (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17, 259260.10.1038/s41569-020-0360-5CrossRefGoogle ScholarPubMed
Berger, JR (2020) COVID-19 and the nervous system. J Neurovirol 26, 143148.10.1007/s13365-020-00840-5CrossRefGoogle ScholarPubMed
Amirian, ES (2020) Potential fecal transmission of SARS-CoV-2: current evidence and implications for public health. Int J Infect Dis 95, 363370.10.1016/j.ijid.2020.04.057CrossRefGoogle Scholar
Dhar, D & Mohanty, A (2020) Gut microbiota and Covid-19 possible link and implications. Virus Res 285, 198018.10.1016/j.virusres.2020.198018CrossRefGoogle ScholarPubMed
Tang, L, Gu, S, Gong, Y, et al. (2020) Clinical significance of the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering 6, 11781184.10.1016/j.eng.2020.05.013CrossRefGoogle ScholarPubMed
Enaud, R, Prevel, R, Ciarlo, E, et al. (2020) The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol 10, 111.10.3389/fcimb.2020.00009CrossRefGoogle ScholarPubMed
Dang, AT & Marsland, BJ (2019) Microbes, metabolites, and the gut-lung axis. Mucosal Immunol 12, 843850.10.1038/s41385-019-0160-6CrossRefGoogle ScholarPubMed
Zuo, T, Zhang, F, Lui, GCY, et al. (2020) Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 159, 944.e8955.e8.Google ScholarPubMed
Danneskiold-Samsøe, NB, Barros, HDFQ, Santos, R, et al. (2019) Interplay between food and gut microbiota in health and disease. Food Res Int 115, 2331.10.1016/j.foodres.2018.07.043CrossRefGoogle ScholarPubMed
Maffetone, PB & Laursen, PB (2020) The perfect storm: coronavirus (COVID-19) pandemic meets overfat pandemic. Front Public Health 8, 16.10.3389/fpubh.2020.00135CrossRefGoogle ScholarPubMed
Walton, GE, Gibson, GR & Hunter, KA (2020) Mechanisms linking the human gut microbiome to prophylactic and treatment strategies for COVID-19. Br J Nutr 9, 19.Google Scholar
Vernocchi, P, Del Chierico, F & Putignani, L (2020) Gut microbiota metabolism and interaction with food components. Int J Mol Sci 21, 119.10.3390/ijms21103688CrossRefGoogle ScholarPubMed
Azad, MAK, Sarker, M & Wan, D (2018) Immunomodulatory effects of probiotics on cytokine profiles. Biomed Res Int 2018, 110.Google ScholarPubMed
Hardy, H, Harris, J, Lyon, E, et al. (2013) Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 5, 18691912.10.3390/nu5061869CrossRefGoogle ScholarPubMed
Zeng, W, Shen, J, Bo, T, et al. (2019) Cutting edge: probiotics and fecal microbiota transplantation in immunomodulation. J Immunol Res 2019, 117.10.1155/2019/1603758CrossRefGoogle ScholarPubMed
Peters, VBM, van de Steeg, E, van Bilsen, J, et al. (2019) Mechanisms and immunomodulatory properties of pre- and probiotics. Benef Microbes 10, 225236.10.3920/BM2018.0066CrossRefGoogle ScholarPubMed
Dao, TL, Hoang, VT & Gautret, P (2021) Recurrence of SARS-CoV-2 viral RNA in recovered COVID-19 patients: a narrative review. Eur J Clin Microbiol Infect Dis 40, 1325.10.1007/s10096-020-04088-zCrossRefGoogle ScholarPubMed
Morais, AHA, Aquino, JS, da Silva-Maia, JK, et al. (2021) Nutritional status, diet and viral respiratory infections: perspectives for SARS-CoV-2. Br J Nutr 125, 851886.10.1017/S0007114520003311CrossRefGoogle Scholar
Calder, PC & Kew, S (2002) The immune system: a target for functional foods? Br J Nutr 88, Suppl. 2, S165S177.10.1079/BJN2002682CrossRefGoogle ScholarPubMed
Lippi, G, Lavie, CJ, Henry, BM, et al. (2020) Do genetic polymorphisms in angiotensin converting enzyme 2 (ACE2) gene play a role in coronavirus disease 2019 (COVID-19)? Clin Chem Lab Med 58, 14151422.10.1515/cclm-2020-0727CrossRefGoogle ScholarPubMed
Fakhouri, EW, Peterson, SJ, Kothari, J, et al. (2020) Genetic polymorphisms complicate COVID-19 therapy: pivotal role of HO-1 in cytokine storm. Antioxidants 9, 636.10.3390/antiox9070636CrossRefGoogle ScholarPubMed
Kwaifa, IK, Bahari, H, Yong, YK, et al. (2020) Endothelial dysfunction in obesity-induced inflammation: molecular mechanisms and clinical implications. Biomolecules 10, 121.10.3390/biom10020291CrossRefGoogle ScholarPubMed
Butler, MJ & Barrientos, RM (2020) The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav Immun 87, 5354.10.1016/j.bbi.2020.04.040CrossRefGoogle ScholarPubMed
Sharma, R, Agarwal, M, Gupta, M, et al. (2020) Clinical characteristics and differential clinical diagnosis of novel coronavirus disease 2019 (COVID-19): epidemiology, pathogenesis, diagnosis, and therapeutics. In Coronavirus Disease 2019 (COVID-19), pp. 5570 [Saxena, SK, editor]. Singapore: Springer.10.1007/978-981-15-4814-7_6CrossRefGoogle ScholarPubMed
Yang, X, Yu, Y, Xu, J, et al. (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 8, 475481.10.1016/S2213-2600(20)30079-5CrossRefGoogle Scholar
Dickson, RP (2016) The microbiome and critical illness. Lancet Respir Med 4, 5972.10.1016/S2213-2600(15)00427-0CrossRefGoogle ScholarPubMed
Kolodziejczyk, AA, Zheng, D & Elinav, E (2019) Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol 17, 742753.10.1038/s41579-019-0256-8CrossRefGoogle ScholarPubMed
Calder, PC, Carr, AC, Gombart, AF, et al. (2020) Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients 12, 110.10.3390/nu12041181CrossRefGoogle ScholarPubMed
Iyer, R & Bansal, A (2019) What do we know about optimal nutritional strategies in children with pediatric acute respiratory distress syndrome? Ann Transl Med 7, 510.10.21037/atm.2019.08.25CrossRefGoogle ScholarPubMed
Groves, HT, Higham, SL, Moffatt, MF, et al. (2020) Respiratory viral infection alters the gut microbiota by inducing inappetence. mBio 11, 117.10.1128/mBio.03236-19CrossRefGoogle ScholarPubMed
Lamers, MM, Beumer, J, van der Vaart, J, et al. (2020) SARS-CoV-2 productively infects human gut enterocytes. Science 369, 5054.10.1126/science.abc1669CrossRefGoogle ScholarPubMed
Muus, C, Luecken, MD, Eraslan, G, et al. (2021) Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat Med 27, 546559.10.1038/s41591-020-01227-zCrossRefGoogle ScholarPubMed
Bajaj, A & Purohit, HJ (2020) Understanding SARS-CoV-2: genetic diversity, transmission and cure in human. Indian J Microbiol 60, 14.10.1007/s12088-020-00869-4CrossRefGoogle ScholarPubMed
Henry, BM, de Oliveira, MHS, Benoit, J, et al. (2020) Gastrointestinal symptoms associated with severity of coronavirus disease 2019 (COVID-19): a pooled analysis. Intern Emerg Med 15, 857859.10.1007/s11739-020-02329-9CrossRefGoogle ScholarPubMed
Levy, M, Kolodziejczyk, AA, Thaiss, CA, et al. (2017) Dysbiosis and the immune system. Nat Rev Immunol 17, 219232.10.1038/nri.2017.7CrossRefGoogle ScholarPubMed
Lechien, JR, Chiesa-Estomba, CM, de Siati, DR, et al. (2020) Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 277, 22512261.10.1007/s00405-020-05965-1CrossRefGoogle ScholarPubMed
Rautiainen, S, Manson, JE, Lichtenstein, AH, et al. (2016) Dietary supplements and disease prevention – a global overview. Nat Rev Endocrinol 12, 407420.10.1038/nrendo.2016.54CrossRefGoogle ScholarPubMed
Messina, G, Polito, R, Monda, V, et al. (2020) Functional role of dietary intervention to improve the outcome of COVID-19: a hypothesis of work. Int J Mol Sci 21, 3104.10.3390/ijms21093104CrossRefGoogle ScholarPubMed
Sanders, ME, Merenstein, DJ, Reid, G, et al. (2019) Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 16, 605616.10.1038/s41575-019-0173-3CrossRefGoogle ScholarPubMed
Hill, C, Guarner, F, Reid, G, et al. (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11, 506514.10.1038/nrgastro.2014.66CrossRefGoogle ScholarPubMed
Delgado, GTC & Tamashiro, WMSC (2018) Role of prebiotics in regulation of microbiota and prevention of obesity. Food Res Int 113, 183188.10.1016/j.foodres.2018.07.013CrossRefGoogle Scholar
Ahmadi, S, Nagpal, R, Wang, S, et al. (2019) Prebiotics from acorn and sago prevent high-fat-diet-induced insulin resistance via microbiome-gut-brain axis modulation. J Nutr Biochem 67, 113.10.1016/j.jnutbio.2019.01.011CrossRefGoogle ScholarPubMed
Gallego, CG & Salminen, S (2016) Novel probiotics and prebiotics: how can they help in human gut microbiota dysbiosis? Appl Food Biotechnol 3, 7281.Google Scholar
Zielińska, D & Kolożyn-Krajewska, D (2018) Food-origin lactic acid bacteria may exhibit probiotic properties: review. Biomed Res Int 2018, 5063185.10.1155/2018/5063185CrossRefGoogle Scholar
Kerry, RG, Patra, JK, Gouda, S, et al. Benefaction of probiotics for human health: a review. J Food Drug Anal 26, 927939.10.1016/j.jfda.2018.01.002CrossRefGoogle Scholar
Sanders, ME, Benson, A, Lebeer, S, et al. (2018) Shared mechanisms among probiotic taxa: implications for general probiotic claims. Curr Opin Biotechnol 49, 207216.10.1016/j.copbio.2017.09.007CrossRefGoogle ScholarPubMed
Ríos-Covián, D, Ruas-Madiedo, P, Margolles, A, et al. (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7, 19.10.3389/fmicb.2016.00185CrossRefGoogle ScholarPubMed
Molska, M & Reguła, J (2019) Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer. Nutrients 11, 117.10.3390/nu11102453CrossRefGoogle ScholarPubMed
Davison, JM & Wischmeyer, PE (2019) Probiotic and synbiotic therapy in the critically ill: state of the art. Nutrition 59, 2936.10.1016/j.nut.2018.07.017CrossRefGoogle ScholarPubMed
Graf, D, Di Cagno, R, Fåk, F, et al. (2015) Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 26, 111.Google Scholar
Brosseau, C, Selle, A, Palmer, DJ, et al. (2019) Prebiotics: mechanisms and preventive effects in allergy. Nutrients 11, 126.10.3390/nu11081841CrossRefGoogle ScholarPubMed
Rooks, MG & Garrett, WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16, 341352.10.1038/nri.2016.42CrossRefGoogle ScholarPubMed
Kalantar-Zadeh, K, Ward, SA, Kalantar-Zadeh, K, et al. (2020) Considering the effects of microbiome and diet on SARS-CoV-2 infection: nanotechnology roles. ACS Nano 14, 51795182.10.1021/acsnano.0c03402CrossRefGoogle ScholarPubMed
Qian, L, Lu, L, Huang, L, et al. (2019) The effect of neonatal maternal separation on short-chain fatty acids and airway inflammation in adult asthma mice. Allergol Immunopathol 47, 211.10.1016/j.aller.2018.05.004CrossRefGoogle ScholarPubMed
Wang, H, Lee, I-S, Braun, C, et al. (2016) Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J Neurogastroenterol Motil 22, 589605.10.5056/jnm16018CrossRefGoogle ScholarPubMed
Hsu, C-N, Lin, Y-J, Hou, C-Y, et al. (2018) Maternal administration of probiotic or prebiotic prevents male adult rat offspring against developmental programming of hypertension induced by high fructose consumption in pregnancy and lactation. Nutrients 10, 1229.10.3390/nu10091229CrossRefGoogle ScholarPubMed
Farzi, A, Fröhlich, EE & Holzer, P (2018) Gut microbiota and the neuroendocrine system. Neurotherapeutics 15, 522.10.1007/s13311-017-0600-5CrossRefGoogle ScholarPubMed
Zhang, H, Yeh, C, Jin, Z, et al. (2018) Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate. Synth Syst Biotechnol 3, 113120.10.1016/j.synbio.2018.03.001CrossRefGoogle ScholarPubMed
Harper, A, Vijayakumar, V, Ouwehand, AC, et al. (2021) Viral infections, the microbiome, and probiotics. Front Cell Infect Microbiol 10, 596166.10.3389/fcimb.2020.596166CrossRefGoogle ScholarPubMed
d’Ettorre, G, Ceccarelli, G, Marazzato, M, et al. (2020) Challenges in the management of SARS-CoV2 infection: the role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Front Med 7, 389.10.3389/fmed.2020.00389CrossRefGoogle ScholarPubMed
Ceccarelli, G, Borrazzo, C, Pinacchio, C, et al. (2020) Oral bacteriotherapy in patients with COVID-19: a retrospective cohort study. Front Nutr 7, 613928.10.3389/fnut.2020.613928CrossRefGoogle ScholarPubMed
Li, Q, Cheng, F, Xu, Q, et al. (2021) The role of probiotics in coronavirus disease-19 infection in Wuhan: a retrospective study of 311 severe patients. Int Immunopharmacol 95, 107531.10.1016/j.intimp.2021.107531CrossRefGoogle ScholarPubMed
Fong, FLY, Shah, NP, Kirjavainen, P, et al. Mechanism of action of probiotic bacteria on intestinal and systemic immunities and antigen-presenting cells. Int Rev Immunol 35, 179188.10.3109/08830185.2015.1096937CrossRefGoogle Scholar
Yousefi, B, Eslami, M, Ghasemian, A, et al. (2019) Probiotics importance and their immunomodulatory properties. J Cell Physiol 234, 80088018.10.1002/jcp.27559CrossRefGoogle ScholarPubMed
Merad, M & Martin, JC (2020) Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 20, 355362.10.1038/s41577-020-0331-4CrossRefGoogle ScholarPubMed
Market, M, Angka, L, Martel, AB, et al. (2020) Flattening the COVID-19 curve with natural killer cell based immunotherapies. Front Immunol 11, 1512.10.3389/fimmu.2020.01512CrossRefGoogle ScholarPubMed
Jiang, P, Yang, W, Jin, Y, et al. (2019) Lactobacillus reuteri protects mice against Salmonella typhimurium challenge by activating macrophages to produce nitric oxide. Microb Pathog 137, 103754.10.1016/j.micpath.2019.103754CrossRefGoogle ScholarPubMed
Lee, I-C, van Swam, II, Boeren, S, et al. (2020) Lipoproteins contribute to the anti-inflammatory capacity of WCFS1. Front Microbiol 11, 1822.10.3389/fmicb.2020.01822CrossRefGoogle Scholar
Ye, C, Brand, D & Zheng, SG (2018) Targeting IL-2: an unexpected effect in treating immunological diseases. Signal Transduct Target Ther 3, 110.Google ScholarPubMed
Tiwari, SK, Dicks, LMT, Popov, IV, et al. (2020) Probiotics at war against viruses: what is missing from the picture? Front Microbiol 11, 1877.CrossRefGoogle ScholarPubMed
Anwar, F, Altayb, HN, Al-Abbasi, FA, et al. (2020) Antiviral effects of probiotic metabolites on COVID-19. J Biomol Struct Dyn 9, 110.Google Scholar
Yang, Y, Song, H, Wang, L, et al. (2017) Antiviral effects of a probiotic metabolic products against transmissible gastroenteritis coronavirus. J Prob Health 5, 16.CrossRefGoogle Scholar
Wang, C, Wang, S, Li, D, et al. (2020) Human intestinal defensin 5 inhibits SARS-CoV-2 invasion by cloaking ACE2. Gastroenterology 159, 11451147.10.1053/j.gastro.2020.05.015CrossRefGoogle ScholarPubMed
Belkacem, N, Serafini, N, Wheeler, R, et al. (2017) Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLoS ONE 12, e0184976.10.1371/journal.pone.0184976CrossRefGoogle ScholarPubMed
Park, M-K, Ngo, V, Kwon, Y-M, et al. (2013) Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity. PLoS ONE 8, e75368.10.1371/journal.pone.0075368CrossRefGoogle ScholarPubMed
Nishihira, J, Moriya, T, Sakai, F, et al. (2016) Lactobacillus gasseri SBT2055 stimulates immunoglobulin production and innate immunity after influenza vaccination in healthy adult volunteers: a randomized, double-blind, placebo-controlled, parallel-group study. Funct Food Health Dis 6, 544568.10.31989/ffhd.v6i9.284CrossRefGoogle Scholar
Laursen, RP & Hojsak, I (2018) Probiotics for respiratory tract infections in children attending day care centers – a systematic review. Eur J Pediatr 177, 979994.CrossRefGoogle ScholarPubMed
Wang, Y, Li, X, Ge, T, et al. (2016) Probiotics for prevention and treatment of respiratory tract infections in children: a systematic review and meta-analysis of randomized controlled trials. Medicine 95, e4509.10.1097/MD.0000000000004509CrossRefGoogle ScholarPubMed
Dong, Y, Mo, X, Hu, Y, et al. (2020) Epidemiology of COVID-19 among children in China. Pediatrics 145, e20200702.10.1542/peds.2020-0702CrossRefGoogle ScholarPubMed
Götzinger, F, Santiago-García, B, Noguera-Julián, A, et al. (2020) COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health 4, 653661.10.1016/S2352-4642(20)30177-2CrossRefGoogle ScholarPubMed
Lee, B & Raszka, WV Jr (2020) COVID-19 transmission and children: the child is not to blame. Pediatrics 146, e2020004879.10.1542/peds.2020-004879CrossRefGoogle ScholarPubMed
Wang, Q, Lin, X, Xiang, X, et al. (2021) Oropharyngeal probiotic ENT-K12 prevents respiratory tract infections among frontline medical staff fighting against COVID-19: a pilot study. Front Bioeng Biotechnol 9, 467.Google ScholarPubMed
Gibson, GR, Hutkins, R, Sanders, ME, et al. (2017) The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14, 491502.10.1038/nrgastro.2017.75CrossRefGoogle ScholarPubMed
Ashwinia, A, Ramya, HN, Ramkumara, C, et al. (2019) Reactive mechanism and the applications of bioactive prebiotics for human health: review. J Microbiol Methods 159, 128137.10.1016/j.mimet.2019.02.019CrossRefGoogle Scholar
Neri-Numa, IA, Arruda, HS, Geraldi, MV, et al. (2020) Natural prebiotic carbohydrates, carotenoids and flavonoids as ingredients in food systems. Curr Opin Food Sci 33, 98107.10.1016/j.cofs.2020.03.004CrossRefGoogle Scholar
Singh, RK, Chang, H-W, Yan, D, et al. (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15, 73.10.1186/s12967-017-1175-yCrossRefGoogle ScholarPubMed
Markowiak, P & Śliżewska, K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9, 130.10.3390/nu9091021CrossRefGoogle ScholarPubMed
Xavier-Santos, D, Bedani, R, Lima, ED, et al. (2020) Impact of probiotics and prebiotics targeting metabolic syndrome. J Funct Foods 64, 103666.10.1016/j.jff.2019.103666CrossRefGoogle Scholar
McFarlane, C, Ramos, CI, Johnson, DW, et al. (2019) Prebiotic, probiotic, and synbiotic supplementation in chronic kidney disease: a systematic review and meta-analysis. J Ren Nutr 29, 209220.10.1053/j.jrn.2018.08.008CrossRefGoogle ScholarPubMed
Delzenne, NM, Olivares, M, Neyrinck, AM, et al. (2020) Nutritional interest of dietary fiber and prebiotics in obesity: lessons from the MyNewGut consortium. Clin Nutr 39, 414424.10.1016/j.clnu.2019.03.002CrossRefGoogle ScholarPubMed
Paiva, IHR, Duarte-Silva, E & Peixoto, CA (2020) The role of prebiotics in cognition, anxiety, and depression. Eur Neuropsychopharmacol 34, 118.10.1016/j.euroneuro.2020.03.006CrossRefGoogle ScholarPubMed
Amiot, MJ, Riva, C & Vinet, A (2016) Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 17, 573586.CrossRefGoogle ScholarPubMed
Moorthy, M, Chaiyakunapruk, N, Jacob, SA, et al. (2020) Prebiotic potential of polyphenols, its effect on gut microbiota and anthropometric/clinical markers: a systematic review of randomised controlled trials. Trends Food Sci Technol 99, 634649.10.1016/j.tifs.2020.03.036CrossRefGoogle Scholar
Luoto, R, Ruuskanen, O, Waris, M, et al. (2014) Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J Allergy Clin Immunol 133, 405413.10.1016/j.jaci.2013.08.020CrossRefGoogle ScholarPubMed
Shahramian, I, Kalvandi, G, Javaherizadeh, H, et al. (2018) The effects of prebiotic supplementation on weight gain, diarrhoea, constipation, fever and respiratory tract infections in the first year of life. J Paediatr Child Health 54, 875880.10.1111/jpc.13906CrossRefGoogle ScholarPubMed
Ranucci, G, Buccigrossi, V, Borgia, E, et al. (2018) Galacto-oligosaccharide/polidextrose enriched formula protects against respiratory infections in infants at high risk of atopy: a randomized clinical trial. Nutrients 10, 114.CrossRefGoogle ScholarPubMed
Kim, H, Rebholz, CM, Hegde, S, et al. (2021) Plant-based diets, pescatarian diets and COVID-19 severity: a population-based case–control study in six countries. BMJ Nutr Prev Health 4, 257266.10.1136/bmjnph-2021-000272CrossRefGoogle ScholarPubMed
Azagra-Boronat, I, Massot-Cladera, M, Knipping, K, et al. (2018) Supplementation with 2’-FL and scGOS/lcFOS ameliorates rotavirus-induced diarrhea in suckling rats. Front Cell Infect Microbiol 8, 372.CrossRefGoogle ScholarPubMed
Rigo-Adrover, MDM, van Limpt, K, Knipping, K, et al. (2018) Preventive effect of a synbiotic combination of galacto- and fructooligosaccharides mixture with Bifidobacterium breve M-16V in a model of multiple rotavirus infections. Front Immunol 9, 1318.10.3389/fimmu.2018.01318CrossRefGoogle Scholar
Rigo-Adrover, MDM, Knipping, K, Garssen, J, et al. (2019) Prevention of rotavirus diarrhea in suckling rats by a specific fermented milk concentrate with prebiotic mixture. Nutrients 11, 189.10.3390/nu11010189CrossRefGoogle ScholarPubMed
Vandeputte, D, Falony, G, Vieira-Silva, S, et al. (2017) Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 66, 19681974.10.1136/gutjnl-2016-313271CrossRefGoogle ScholarPubMed
Anand, S & Mande, SS (2018) Diet, microbiota and gut-lung connection. Front Microbiol 9, 2147.CrossRefGoogle ScholarPubMed
Gourbeyre, P, Denery, S & Bodinier, M (2011) Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J Leukoc Biol 89, 685695.10.1189/jlb.1109753CrossRefGoogle ScholarPubMed
Tochio, T, Kadota, Y, Tanaka, T, et al. (2018) 1-kestose, the smallest fructooligosaccharide component, which efficiently stimulates as well as Bifidobacteria in humans. Foods 7, 111.10.3390/foods7090140CrossRefGoogle ScholarPubMed
Chung, WSF, Meijerink, M, Zeuner, B, et al. (2017) Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol 93, 19.10.1093/femsec/fix127CrossRefGoogle ScholarPubMed
Lehmann, S, Hiller, J, van Bergenhenegouwen, J, et al. (2015) In vitro evidence for immune-modulatory properties of non-digestible oligosaccharides: direct effect on human monocyte derived dendritic cells. PLOS ONE 10, e0132304.10.1371/journal.pone.0132304CrossRefGoogle ScholarPubMed
Chojnacka, K, Witek-Krowiak, A, Skrzypczak, D, et al. (2020) Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J Funct Foods 73, 104146.10.1016/j.jff.2020.104146CrossRefGoogle ScholarPubMed
Upreti, S, Prusty, JS, Pandey, SC, et al. (2021) Identification of novel inhibitors of angiotensin-converting enzyme 2 (ACE-2) receptor from Urtica dioica to combat coronavirus disease 2019 (COVID-19). Mol Divers 2021, 115.Google Scholar
García-Iriepa, C, Hognon, C, Francés-Monerris, A, et al. (2020) Thermodynamics of the interaction between the spike protein of severe acute respiratory syndrome coronavirus-2 and the receptor of human angiotensin-converting enzyme 2. Effects of possible ligands. J Phys Chem Lett 11, 92729281.10.1021/acs.jpclett.0c02203CrossRefGoogle ScholarPubMed
Chen, X, Wu, Y, Chen, C, et al. (2021) Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. Acta Pharm Sin B 11, 222236.10.1016/j.apsb.2020.10.002CrossRefGoogle ScholarPubMed
Robba, C, Battaglini, D, Pelosi, P, et al. (2020) Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev Respir Med 14, 865868.10.1080/17476348.2020.1778470CrossRefGoogle ScholarPubMed
Ragab, D, Salah Eldin, H, Taeimah, M, et al. (2020) The COVID-19 cytokine storm; what we know so far. Front Immunol 11, 1446.10.3389/fimmu.2020.01446CrossRefGoogle ScholarPubMed
Gupta, A, Madhavan, MV, Sehgal, K, et al. (2020) Extrapulmonary manifestations of COVID-19. Nat Med 26, 10171032.CrossRefGoogle ScholarPubMed
Chen, Z & John Wherry, E (2020) T cell responses in patients with COVID-19. Nat Rev Immunol 20, 529536.CrossRefGoogle ScholarPubMed
Alhazzani, W, Møller, MH, Arabi, YM, et al. (2020) Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit Care Med 48, e440e469.10.1097/CCM.0000000000004363CrossRefGoogle ScholarPubMed
Ahmadi, R, Salari, S, Sharifi, MD, et al. (2021) Oral nano-curcumin formulation efficacy in the management of mild to moderate outpatient COVID-19: a randomized triple-blind placebo-controlled clinical trial. Food Sci Nutr 1, 18.Google Scholar
Pawar, KS, Mastud, RN, Pawar, SK, et al. (2021) Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: a randomized clinical trial. Front Pharmacol 28, 669362.10.3389/fphar.2021.669362CrossRefGoogle Scholar
Saber-Moghaddam, N, Salari, S, Hejazi, S, et al. (2021) Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: an open label nonrandomized clinical trial. Phytother Res 35, 26162623.CrossRefGoogle Scholar
McFarland, LV & Goh, S (2019) Are probiotics and prebiotics effective in the prevention of travellers’ diarrhea: a systematic review and meta-analysis. Travel Med Infect Dis 27, 1119.CrossRefGoogle ScholarPubMed
Chan, CKY, Tao, J, Chan, OS, et al. (2020) Preventing respiratory tract infections by synbiotic interventions: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr 11, 979988.10.1093/advances/nmaa003CrossRefGoogle Scholar
World Gastroenterology Organisation (2018) WGO Practice Guideline – Diet and the Gut. https://www.worldgastroenterology.org/guidelines/global-guidelines/diet-and-the-gut (accessed May 2020).Google Scholar
World Gastroenterology Organisation (2017) WGO Practice Guideline – Probiotics and Prebiotics. https://www.worldgastroenterology.org/guidelines/global-guidelines/probiotics-and-prebiotics (accessed May 2020).Google Scholar
Hojsak, I, Fabiano, V, Pop, TL, et al. (2018) Guidance on the use of probiotics in clinical practice in children with selected clinical conditions and in specific vulnerable groups. Acta Paediatr 107, 927937.10.1111/apa.14270CrossRefGoogle ScholarPubMed
Manzanares, W, Lemieux, M, Langlois, PL, et al. (2016) Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit Care 19, 262.10.1186/s13054-016-1434-yCrossRefGoogle ScholarPubMed
Skonieczna-Żydecka, K, Kaczmarczyk, M, Łoniewski, I, et al. (2018) A systematic review, meta-analysis, and meta-regression evaluating the efficacy and mechanisms of action of probiotics and synbiotics in the prevention of surgical site infections and surgery-related complications. J Clin Med Res 7, 556.Google ScholarPubMed
Lin, L, Jiang, X, Zhang, Z, et al. (2020) Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 69, 9971001.CrossRefGoogle ScholarPubMed
Agamennone, V, Krul, CAM, Rijkers, G, et al. (2018) A practical guide for probiotics applied to the case of antibiotic-associated diarrhea in the Netherlands. BMC Gastroenterol 18, 112.10.1186/s12876-018-0831-xCrossRefGoogle Scholar
Guo, Q, Goldenberg, JZ, Humphrey, C, et al. (2019) Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev 4, CD004827.Google ScholarPubMed
Becattini, S, Taur, Y & Pamer, EG (2016) Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 22, 458478.CrossRefGoogle ScholarPubMed
McLoughlin, RF, Berthon, BS, Jensen, ME, et al. (2017) Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am J Clin Nutr 106, 930945.10.3945/ajcn.117.156265CrossRefGoogle ScholarPubMed
Sahebkar, A, Cicero, AFG, Simental-Mendía, LE, et al. (2016) Curcumin downregulates human tumor necrosis factor-α levels: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 107, 234242.CrossRefGoogle Scholar
Zheng, HJ, Guo, J, Wang, Q, et al. (2021) Probiotics, prebiotics, and synbiotics for the improvement of metabolic profiles in patients with chronic kidney disease: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 61, 577598.CrossRefGoogle ScholarPubMed
Maia, LP, Levi, YL de AS, do Prado, RL, et al. (2019) Effects of probiotic therapy on serum inflammatory markers: a systematic review and meta-analysis. J Funct Foods 54, 466478.10.1016/j.jff.2019.01.051CrossRefGoogle Scholar
Tamtaji, OR, Milajerdi, A, Reiner, Ž, et al. (2020) A systematic review and meta-analysis: the effects of probiotic supplementation on metabolic profile in patients with neurological disorders. Complement Ther Med 53, 102507.10.1016/j.ctim.2020.102507CrossRefGoogle ScholarPubMed
Pan, H, Li, R, Li, T, et al. (2017) Whether probiotic supplementation benefits rheumatoid arthritis patients: a systematic review and meta-analysis. Proc Est Acad Sci Eng 3, 115121.Google Scholar
Kazemi, A, Soltani, S, Ghorabi, S, et al. (2020) Is probiotic and synbiotic supplementation effective on immune cells? A systematic review and meta-analysis of clinical trials. Food Rev Int 37, 491537.10.1080/87559129.2019.1710748CrossRefGoogle Scholar
Kazemi, A, Djafarian, K, Speakman, JR, et al. (2018) Effect of probiotic supplementation on CD4 cell count in HIV-infected patients: a systematic review and meta-analysis. J Diet Suppl 15, 776788.CrossRefGoogle ScholarPubMed
Fu, Y-S, Chu, Q-S, Ashuro, AA, et al. (2020) The effect of probiotics, prebiotics, and synbiotics on CD4 counts in HIV-infected patients: a systematic review and meta-analysis. Biomed Res Int 2020, 7947342.CrossRefGoogle ScholarPubMed
Motoori, M, Yano, M, Miyata, H, et al. (2017) Randomized study of the effect of synbiotics during neoadjuvant chemotherapy on adverse events in esophageal cancer patients. Clin Nutr 36, 9399.10.1016/j.clnu.2015.11.008CrossRefGoogle ScholarPubMed
Azkur, AK, Akdis, M, Azkur, D, et al. (2020) Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 75, 15641581.CrossRefGoogle ScholarPubMed
Tralongo, AC & Extermann, M (2020) Older patients with cancer and febrile neutropenia in the COVID-19 era: a new concern. J Geriatr Oncol 11, 13291330.10.1016/j.jgo.2020.06.021CrossRefGoogle Scholar
Spencer, HC & Wurzburger, R (2020) COVID-19 presenting as neutropenic fever. Ann Hematol 99, 19391940.CrossRefGoogle ScholarPubMed
Feng, X, Li, S, Sun, Q, et al. (2020) Immune-inflammatory parameters in COVID-19 cases: a systematic review and meta-analysis. Front Med 7, 301.10.3389/fmed.2020.00301CrossRefGoogle Scholar
Chowdhury, AH, Cámara, M, Verma, C, et al. (2019) Modulation of T regulatory and dendritic cell phenotypes following ingestion of Bifidobacterium longum, AHCC® and Azithromycin in healthy individuals. Nutrients 11, 2470.10.3390/nu11102470CrossRefGoogle ScholarPubMed
Iemoli, E, Trabattoni, D, Parisotto, S, et al. (2012) Probiotics reduce gut microbial translocation and improve adult atopic dermatitis. J Clin Gastroenterol 46, S33S40.10.1097/MCG.0b013e31826a8468CrossRefGoogle Scholar
Dwivedi, M, Kumar, P, Laddha, NC, et al. (2016) Induction of regulatory T cells: a role for probiotics and prebiotics to suppress autoimmunity. Autoimmun Rev 15, 379392.CrossRefGoogle ScholarPubMed
Speer, H, D’Cunha, NM, Botek, M, et al. (2019) The effects of dietary polyphenols on circulating cardiovascular disease biomarkers and iron status: a systematic review. Nutr Metab Insights 12, 1178638819882739.CrossRefGoogle ScholarPubMed
Ferlazzo, N, Visalli, G, Cirmi, S, et al. (2016) Natural iron chelators: protective role in A549 cells of flavonoids-rich extracts of Citrus juices in Fe(3+)-induced oxidative stress. Environ Toxicol Pharmacol 43, 248256.10.1016/j.etap.2016.03.005CrossRefGoogle ScholarPubMed
Lakey-Beitia, J, Burillo, AM, La Penna, G, et al. (2021) Polyphenols as potential metal chelation compounds against Alzheimer’s disease. J Alzheimers Dis 82, S335S357.CrossRefGoogle ScholarPubMed
Stiksrud, B, Nowak, P, Nwosu, FC, et al. (2015) Reduced levels of D-dimer and changes in gut microbiota composition after probiotic intervention in HIV-infected individuals on stable art. J Acquir Immune Defic Syndr 70, 329337.10.1097/QAI.0000000000000784CrossRefGoogle ScholarPubMed
Yeh, T-L, Shih, P-C, Liu, S-J, et al. (2018) The influence of prebiotic or probiotic supplementation on antibody titers after influenza vaccination: a systematic review and meta-analysis of randomized controlled trials. Drug Des Devel Ther 12, 217230.CrossRefGoogle ScholarPubMed
Lei, W-T, Shih, P-C, Liu, S-J, et al. (2017) Effect of probiotics and prebiotics on immune response to influenza vaccination in adults: a systematic review and meta-analysis of randomized controlled trials. Nutrients 9, 1175.10.3390/nu9111175CrossRefGoogle ScholarPubMed
Carfì, A, Bernabei, R, Landi, F, et al. (2020) Persistent symptoms in patients after acute COVID-19. JAMA 324, 603635.CrossRefGoogle ScholarPubMed
Schumann, D, Klose, P, Lauche, R, et al. (2018) Low fermentable, oligo-, di-, mono-saccharides and polyol diet in the treatment of irritable bowel syndrome: a systematic review and meta-analysis. Nutrition 45, 2431.10.1016/j.nut.2017.07.004CrossRefGoogle ScholarPubMed
Sotoudegan, F, Daniali, M, Hassani, S, et al. (2019) Reappraisal of probiotics’ safety in human. Food Chem Toxicol 129, 2229.10.1016/j.fct.2019.04.032CrossRefGoogle ScholarPubMed
Baud, D, Dimopoulou Agri, V, Gibson, GR, et al. (2020) Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front Public Health 8, 186.10.3389/fpubh.2020.00186CrossRefGoogle Scholar
Costa, RL, Moreira, J, Lorenzo, A, et al. (2018) Infectious complications following probiotic ingestion: a potentially underestimated problem? A systematic review of reports and case series. BMC Complement Altern Med 18, 329.10.1186/s12906-018-2394-3CrossRefGoogle ScholarPubMed
Vermeulen, MJ, Luijendijk, A, van Toledo, L, et al. (2020) Quality of probiotic products for preterm infants: contamination and missing strains. Acta Paediatr 109, 276279.10.1111/apa.14976CrossRefGoogle ScholarPubMed
Kolaček, S, Hojsak, I, Berni Canani, R, et al. (2017) Commercial probiotic products: a call for improved quality control. A position paper by the ESPGHAN working group for probiotics and prebiotics. J Pediatr Gastroenterol Nutr 65, 117124.10.1097/MPG.0000000000001603CrossRefGoogle Scholar
Swanson, KS, Gibson, GR, Hutkins, R, et al. (2020) The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol 17, 687701.CrossRefGoogle ScholarPubMed
Food and Drug Administration (2017) Regulatory Framework for Substances Intended for Use in Human Food or Animal Food on the Basis of the Generally Recognized as Safe (GRAS) Provision of the Federal Food, Drug, and Cosmetic Act: Guidance for Industry. https://www.fda.gov/media/109117/download (accessed November 2020).Google Scholar
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, K, Allende, A, et al. (2020) Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 11: suitability of taxonomic units notified to EFSA until September 2019. EFSA J 18, e05965.Google ScholarPubMed
Kumar, H, Salminen, S, Verhagen, H, et al. (2015) Novel probiotics and prebiotics: road to the market. Curr Opin Biotechnol 32, 99103.CrossRefGoogle ScholarPubMed
Verma, DK, Niamah, AK, Patel, AR, et al. Chemistry and microbial sources of curdlan with potential application and safety regulations as prebiotic in food and health. Food Res Int 133, 109136.10.1016/j.foodres.2020.109136CrossRefGoogle Scholar
Morais, AHA, Passos, TS, Maciel, BLL, et al. (2020) Can probiotics and diet promote beneficial immune modulation and purine control in coronavirus infection? Nutrients 12, 118.10.3390/nu12061737CrossRefGoogle ScholarPubMed
All-Party Parliamentary Group, Gibson, GR & Calder, PC (2020) Call for a Government Evaluation of the Link between Nutrition and the Gut Microbiome with Respect to the COVID-19 Pandemic. https://www.nutritionsociety.org/sites/default/files/attachments/page/call_for_evaluation_of_nutrition_covid.pdf (accessed May 2021).Google Scholar
Campbell, C & Rudensky, A (2020) Roles of regulatory T cells in tissue pathophysiology and metabolism. Cell Metab 31, 1825.10.1016/j.cmet.2019.09.010CrossRefGoogle ScholarPubMed
Sharabi, A, Tsokos, MG, Ding, Y, et al. (2018) Regulatory T cells in the treatment of disease. Nat Rev Drug Discov 17, 823844.10.1038/nrd.2018.148CrossRefGoogle ScholarPubMed
Tian, Y, Seumois, G, de-Oliveira-Pinto, LM, et al. (2019) Molecular signatures of dengue virus-specific IL-10/IFN-γ co-producing CD4 T cells and their association with dengue disease. Cell Rep 29, 4482.e44495.e4.CrossRefGoogle ScholarPubMed
Shinde, T, Hansbro, PM, Sohal, SS, et al. (2020) Microbiota modulating nutritional approaches to countering the effects of viral respiratory infections including SARS-CoV-2 through promoting metabolic and immune fitness with probiotics and plant bioactives. Microorganisms 8, 921.10.3390/microorganisms8060921CrossRefGoogle ScholarPubMed
Corrêa-Oliveira, R, Fachi, JL, Vieira, A, et al. (2016) Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology 5, e73.CrossRefGoogle ScholarPubMed
Drakoularakou, A, Tzortzis, G, Rastall, RA, et al. (2010) A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers’ diarrhoea. Eur J Clin Nutr 64, 146152.10.1038/ejcn.2009.120CrossRefGoogle ScholarPubMed
Lau, AS-Y, Yanagisawa, N, Hor, Y-Y, et al. (2018) Bifidobacterium longum BB536 alleviated upper respiratory illnesses and modulated gut microbiota profiles in Malaysian pre-school children. Benef Microbes 9, 6170.CrossRefGoogle ScholarPubMed
Blaabjerg, S, Artzi, DM & Aabenhus, R (2017) Probiotics for the prevention of antibiotic-associated diarrhea in outpatients – a systematic review and meta-analysis. Antibiotics 6, 117.10.3390/antibiotics6040021CrossRefGoogle ScholarPubMed
Kushiro, A, Shimizu, K, Takada, T, et al. (2019) Decreased number of days of fever detection and duration of fever with continuous intake of a fermented milk drink: a randomized, double-blind, placebo-controlled study of elderly nursing home residents. Biosci Microbiota Food Health 38, 151157.10.12938/bmfh.18-024CrossRefGoogle Scholar
Somerville, VS, Braakhuis, AJ & Hopkins, WG (2016) Effect of flavonoids on upper respiratory tract infections and immune function: a systematic review and meta-analysis. Adv Nutr 7, 488497.10.3945/an.115.010538CrossRefGoogle ScholarPubMed
Vulevic, J, Tzortzis, G, Juric, A, et al. (2018) Effect of a prebiotic galactooligosaccharide mixture (B-GOS®) on gastrointestinal symptoms in adults selected from a general population who suffer with bloating, abdominal pain, or flatulence. Neurogastroenterol Motil 30, e13440.CrossRefGoogle ScholarPubMed
Guo, C, Lei, M, Wang, Y, et al. (2018) Oral administration of probiotic Lactobacillus casei Shirota decreases pneumonia and increases pulmonary functions after single rib fracture: a randomized double-blind, placebo-controlled clinical trial. J Food Sci 83, 22222226.10.1111/1750-3841.14220CrossRefGoogle ScholarPubMed
Lee, DK, Park, JE, Kim, MJ, et al. (2015) Probiotic bacteria, B. longum and L. acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients. Clin Res Hepatol Gastroenterol 39, 237244.CrossRefGoogle ScholarPubMed
Das, S, Gupta, PK & Das, RR (2016) Efficacy and safety of Saccharomyces boulardii in acute rotavirus diarrhea: double blind randomized controlled trial from a developing country. J Trop Pediatr 62, 464470.Google ScholarPubMed
Martami, F, Togha, M, Seifishahpar, M, et al. (2019) The effects of a multispecies probiotic supplement on inflammatory markers and episodic and chronic migraine characteristics: a randomized double-blind controlled trial. Cephalalgia 39, 841853.10.1177/0333102418820102CrossRefGoogle ScholarPubMed
Russo, M, Coppola, V, Giannetti, E, et al. (2018) Oral administration of tannins and flavonoids in children with acute diarrhea: a pilot, randomized, control-case study. Ital J Pediatr 44, 116.CrossRefGoogle ScholarPubMed
Hawkins, J, Baker, C, Cherry, L, et al. (2019) Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: a meta-analysis of randomized, controlled clinical trials. Complement Ther Med 42, 361365.CrossRefGoogle ScholarPubMed
Saint-Marc, T, Blehaut, H, Musial, C, et al. (1995) AIDS-related diarrhea: a double-blind trial of Saccharomyces boulardii. Semaine Des Hopitaux 71, 735741.Google Scholar
McFarland, LV (2010) Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 16, 22022222.CrossRefGoogle ScholarPubMed
Irvine, SL, Hummelen, R & Hekmat, S (2011) Probiotic yogurt consumption may improve gastrointestinal symptoms, productivity, and nutritional intake of people living with human immunodeficiency virus in Mwanza, Tanzania. Nutr Res 31, 875881.CrossRefGoogle ScholarPubMed
Salminen, MK, Tynkkynen, S, Rautelin, H, et al. (2004) The efficacy and safety of probiotic Lactobacillus rhamnosus GG on prolonged, noninfectious diarrhea in HIV patients on antiretroviral therapy: a randomized, placebo-controlled, crossover study. HIV Clin Trials 5, 183191.CrossRefGoogle ScholarPubMed
Trois, L, Cardoso, EM & Miura, E (2008) Use of probiotics in HIV-infected children: a randomized double-blind controlled study. J Trop Pediatr 54, 1924.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Batista et al. supplementary material

Batista et al. supplementary material

Download Batista et al. supplementary material(PDF)
PDF 190.5 KB