Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T10:28:37.134Z Has data issue: false hasContentIssue false

Undulatory swimming in shear-thinning fluids: experiments with Caenorhabditis elegans

Published online by Cambridge University Press:  07 October 2014

D. A. Gagnon
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
N. C. Keim
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
P. E. Arratia*
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
*
Email address for correspondence: parratia@seas.upenn.edu

Abstract

The swimming behaviour of micro-organisms can be strongly influenced by the rheology of their fluid environment. In this article, we experimentally investigate the effects of shear-thinning (ST) viscosity on the swimming behaviour of an undulatory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer’s kinematic data (including propulsion speed) and velocity fields. We find that ST viscosity modifies the velocity fields produced by the swimming nematode but does not modify the nematode’s speed and beating kinematics. Velocimetry data show significant enhancement in local vorticity and circulation and an increase in fluid velocity near the nematode’s tail. These findings are compared with recent theoretical and numerical results.

Type
Rapids
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M. 1991 Introduction to Soil Microbiology. R.E. Krieger.Google Scholar
Brenner, S. 1974 The genetics of Caenorhabditis elegans . Genetics 77, 7194.Google Scholar
Carreau, P. J., DeKee, D. C. R. & Chhabra, R. P. 1997 Rheology of Polymeric Systems. Hanser.Google Scholar
Dasgupta, M., Liu, B., Fu, H. C., Berhanu, M., Breuer, K. S., Powers, T. R. & Kudrolli, A. 2013 Speed of a swimming sheet in Newtonian and viscoelastic fluids. Phys. Rev. E 87, 013015.Google Scholar
Fauci, L. J. & Dillon, R. 2006 Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38, 371394.Google Scholar
Fu, H. C., Shenoy, V. B. & Powers, T. R. 2010 Low-Reynolds-number swimming in gels. Europhys. Lett. 91, 24002.CrossRefGoogle Scholar
Fu, H. C., Wolgemuth, C. W. & Powers, T. R. 2009 Swimming speeds of filaments in nonlinearly viscoelastic fluids. Phys. Fluids 21, 033102033110.Google Scholar
Gagnon, D. A., Shen, X. N. & Arratia, P. E. 2013 Undulatory swimming in fluids with polymer networks. Europhys. Lett. 104, 14004.Google Scholar
Guasto, J. S., Johnson, K. A. & Gollub, J. P. 2010 Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105, 168102.Google ScholarPubMed
Harman, M. W., Dunham-Ems, S. M., Caimano, M. J., Belperron, A. A., Bockenstedt, L. K., Fu, H. C., Radolf, J. D. & Wolgemuth, C. W. 2012 The heterogenous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proc. Natl Acad. Sci. USA 109, 30593064.Google Scholar
Lauga, E. 2007 Propulsion in a viscoelastic fluid. Phys. Fluids 19, 083104083113.CrossRefGoogle Scholar
Lauga, E. & Goldstein, R. E. 2012 Dance of the microswimmers. Phys. Today 65, 3035.Google Scholar
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.CrossRefGoogle Scholar
Liu, B., Powers, T. R. & Breuer, K. S. 2011 Force-free swimming of a model helical flagellum in viscoelastic fluids. Proc. Natl Acad. Sci. USA 108, 1951619520.Google Scholar
Montenegro-Johnson, T. D., Smith, D. J. & Loghin, D. 2013 Physics of rheologically enhanced propulsion: different strokes in generalized Stokes. Phys. Fluids 25, 081903.Google Scholar
Montenegro-Johnson, T. D., Smith, A. A., Smith, D. J., Loghin, D. & Blake, J. R. 2012 Modelling the fluid mechanics of cilia and flagella in reproduction and development. Eur. Phys. J. E 35, 111.CrossRefGoogle ScholarPubMed
Purcell, E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.Google Scholar
Rankin, C. H. 2002 From gene to identified neuron behavior in Caenorhabditis elegans . Nat. Rev. Genet. 3, 622630.Google Scholar
Saintillan, D. & Shelley, M. J. 2012 Emergence of coherent structures and large-scale flows in motile suspensions. J. R. Soc. Interface 9, 571585.Google Scholar
Shen, X. N. & Arratia, P. E. 2011 Undulatory swimming in viscoelastic fluids. Phys. Rev. Lett. 106, 208101.Google Scholar
Sznitman, J., Shen, X. N., Sznitman, R. & Arratia, P. E. 2010a Propulsive force measurements and flow behavior of undulatory swimmers at low Reynolds number. Phys. Fluids 22, 121901.Google Scholar
Sznitman, R., Gupta, M., Hager, G. D., Arratia, P. E. & Sznitman, J. 2010b Multi-environment model estimation for motility analysis of Caenorhabditis elegans . PLoS ONE 5, e11631.CrossRefGoogle ScholarPubMed
Teran, J., Fauci, L. & Shelley, M. 2010 Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104, 038101.Google Scholar
Vélez-Cordero, J. N. & Lauga, E. 2013 Waving transport and propulsion in a generalized Newtonian fluid. J. Non-Newtonian Fluid Mech. 199, 3750.CrossRefGoogle Scholar
Wyatt, N. B. & Liberatore, M. W. 2009 Rheology and viscosity scaling of the polyelectrolyte xanthan gum. J. Appl. Polym. Sci. 114, 40764084.Google Scholar