Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T04:31:45.692Z Has data issue: false hasContentIssue false

Effects of multi-gradient equilibration during vitrification on oocyte survival and embryo development in mice

Published online by Cambridge University Press:  24 November 2023

Yan Zhu
Affiliation:
Medical Experimental Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, People’s Republic of China
Zhen Zhang
Affiliation:
Medical Experimental Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, People’s Republic of China
Guang-Li Zhang
Affiliation:
Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, People’s Republic of China
Man-Xi Jiang*
Affiliation:
Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, People’s Republic of China
*
Corresponding author: Man-Xi Jiang; Email: manxijiang@yahoo.com

Summary

Vitrification has been widely used for oocyte cryopreservation, but there is still a need for optimization to improve clinical outcomes. In this study, we compared the routine droplet merge protocol with modified multi-gradient equilibration vitrification for cryopreservation of mouse oocytes at metaphase II. Subsequently, the oocytes were thawed and subjected to intracytoplasmic sperm injection (ICSI). Oocyte survival and spindle status were evaluated by morphology and immunofluorescence staining. Moreover, the fertilization rates and blastocyst development were examined in vitro. The results showed that multi-gradient equilibration vitrification outperformed droplet merge vitrification in terms of oocyte survival, spindle morphology, blastocyst formation, and embryo quality. In contrast, droplet merge vitrification exhibited decreasing survival rates, a reduced proportion of oocytes with normal spindle morphology, and lower blastocyst rates as the number of loaded oocytes increased. Notably, when more than six oocytes were loaded, reduced oocyte survival rates, abnormal oocyte spindle morphology, and poor embryo quality were observed. These findings highlight that the vitrification of mouse metaphase II oocytes by the modified multi-gradient equilibration vitrification has the advantage of maintaining oocyte survival, spindle morphology, and subsequent embryonic development.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chang, C. C., Lin, C. J., Sung, L. Y., Kort, H. I., Tian, X. C. and Nagy, Z. P. (2011). Impact of phase transition on the mouse oocyte spindle during vitrification. Reproductive Biomedicine Online, 22(2), 184191. doi: 10.1016/j.rbmo.2010.10.009 CrossRefGoogle ScholarPubMed
Choi, J. K., Huang, H. and He, X. (2015). Improved low-CPA vitrification of mouse oocytes using quartz microcapillary. Cryobiology, 70(3), 269272. doi: 10.1016/j.cryobiol.2015.04.003 CrossRefGoogle ScholarPubMed
Ci, Q., Li, M., Zhang, Y., Ma, S., Gao, Q. and Shi, Y. (2014). Confocal microscopic analysis of the microfilament configurations from human vitrification-thawed oocytes matured in vitro . Cryo Letters, 35(6), 544548.Google ScholarPubMed
De Munck, N., Petrussa, L., Verheyen, G., Staessen, C., Vandeskelde, Y., Sterckx, J., Bocken, G., Jacobs, K., Stoop, D., De Rycke, M. and Van de Velde, H. (2015). Chromosomal meiotic segregation, embryonic developmental kinetics and DNA (hydroxy)methylation analysis consolidate the safety of human oocyte vitrification. Molecular Human Reproduction, 21(6), 535544. doi: 10.1093/molehr/gav013 CrossRefGoogle ScholarPubMed
Eroglu, A., Toner, M., Leykin, L. and Toth, T. L. (1998). Cytoskeleton and polyploidy after maturation and fertilization of cryopreserved germinal vesicle-stage mouse oocytes. Journal of Assisted Reproduction and Genetics, 15(7), 447454. doi: 10.1007/BF02744940 CrossRefGoogle ScholarPubMed
Ezoe, K., Yabuuchi, A., Tani, T., Mori, C., Miki, T., Takayama, Y., Beyhan, Z., Kato, Y., Okuno, T., Kobayashi, T. and Kato, K. (2015). Developmental competence of vitrified-warmed bovine oocytes at the germinal-vesicle stage is improved by cyclic adenosine monophosphate modulators during in vitro maturation. PLOS ONE, 10(5), e0126801. doi: 10.1371/journal.pone.0126801 CrossRefGoogle ScholarPubMed
Gao, S., Li, Y., Gao, X., Hu, J., Yang, H. and Chen, Z. J. (2009). Spindle and chromosome changes of human MII oocytes during incubation after slow freezing/fast thawing procedures. Reproductive Sciences, 16(4), 391396. doi: 10.1177/1933719108327590 CrossRefGoogle ScholarPubMed
Gupta, M. K., Uhm, S. J. and Lee, H. T. (2007). Cryopreservation of immature and in vitro matured porcine oocytes by solid surface vitrification. Theriogenology, 67(2), 238248. doi: 10.1016/j.theriogenology.2006.07.015 CrossRefGoogle ScholarPubMed
Huang, J. Y., Buckett, W. M., Gilbert, L., Tan, S. L. and Chian, R. C. (2007). Retrieval of immature oocytes followed by in vitro maturation and vitrification: A case report on a new strategy of fertility preservation in women with borderline ovarian malignancy. Gynecologic Oncology, 105(2), 542544. doi: 10.1016/j.ygyno.2007.01.036 CrossRefGoogle ScholarPubMed
Jiang, M. X., Zhu, Y., Zhu, Z. Y., Sun, Q. Y. and Chen, D. Y. (2005). Effects of cooling, cryopreservation and heating on sperm proteins, nuclear DNA, and fertilization capability in mouse. Molecular Reproduction and Development, 72(1), 129134. doi: 10.1002/mrd.20328 CrossRefGoogle Scholar
Jiménez-Trigos, E., Vicente, J. S. and Marco-Jiménez, F. (2014). First pregnancy and live birth from vitrified rabbit oocytes after intraoviductal transfer and in vivo fertilization. Theriogenology, 82(4), 599604. doi: 10.1016/j.theriogenology.2014.05.029 CrossRefGoogle ScholarPubMed
Johnson, M. H., Pickering, S. J. and George, M. A. (1988). The influence of cooling on the properties of the zona pellucida of the mouse oocyte. Human Reproduction, 3(3), 383387. doi: 10.1093/oxfordjournals.humrep.a136712 CrossRefGoogle ScholarPubMed
Kong, P. C., Zhu, Y., Wang, M. S., Li, H. P., Chen, X. J. and Jiang, M. X. (2013). Reprogramming of round spermatids by the germinal vesicle cytoplasm in mice. PLOS ONE, 8(10), e78437. doi: 10.1371/journal.pone.0078437 CrossRefGoogle ScholarPubMed
Kuleshova, L., Gianaroli, L., Magli, C., Ferraretti, A. and Trounson, A. (1999). Birth following vitrification of a small number of human oocytes: Case report. Human Reproduction, 14(12), 30773079. doi: 10.1093/humrep/14.12.3077 CrossRefGoogle ScholarPubMed
Kuwayama, M., Vajta, G., Ieda, S. and Kato, O. (2005a). Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reproductive Biomedicine Online, 11(5), 608614. doi: 10.1016/s1472-6483(10)61169-8 CrossRefGoogle ScholarPubMed
Kuwayama, M., Vajta, G., Kato, O. and Leibo, S. P. (2005b). Highly efficient vitrification method for cryopreservation of human oocytes. Reproductive Biomedicine Online, 11(3), 300308. doi: 10.1016/s1472-6483(10)60837-1 CrossRefGoogle ScholarPubMed
Martino, A., Songsasen, N. and Leibo, S. P. (1996). Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biology of Reproduction, 54(5), 10591069. doi: 10.1095/biolreprod54.5.1059 CrossRefGoogle ScholarPubMed
Rall, W. F. and Fahy, G. M. (1985). Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature, 313(6003), 573575. doi: 10.1038/313573a0 CrossRefGoogle ScholarPubMed
Rienzi, L., Martinez, F., Ubaldi, F., Minasi, M. G., Iacobelli, M., Tesarik, J. and Greco, E. (2004). Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Human Reproduction, 19(3), 655659. doi: 10.1093/humrep/deh101 CrossRefGoogle ScholarPubMed
Shanshan, G., Mei, L., Keliang, W., Yan, S., Rong, T. and Zi-Jiang, C. (2015). Effect of different rehydration temperatures on the survival of human vitrified-warmed oocytes. Journal of Assisted Reproduction and Genetics, 32(8), 11971203. doi: 10.1007/s10815-015-0480-8 CrossRefGoogle ScholarPubMed
Song, W. Y., Sun, Y. P., Jin, H. X., Xin, Z. M., Su, Y. C., Guo, Y. H. and Chen, Z. J. (2010). [Clinical application of oocyte vitrification in failed testicular sperm extraction cycles: Report of 8 cases]. Zhonghua Nan Ke Xue, 16(4), 305309.Google ScholarPubMed
Tamura, A. N., Huang, T. T. and Marikawa, Y. (2013). Impact of vitrification on the meiotic spindle and components of the microtubule-organizing center in mouse mature oocytes. Biology of Reproduction, 89(5), 112. doi: 10.1095/biolreprod.113.108167 CrossRefGoogle ScholarPubMed
Vajta, G., Holm, P., Kuwayama, M., Booth, P. J., Jacobsen, H., Greve, T. and Callesen, H. (1998). Open Pulled Straw (OPS) vitrification: A new way to reduce cryoinjuries of bovine ova and embryos. Molecular Reproduction and Development, 51(1), 5358. doi: 10.1002/(SICI)1098-2795(199809)51:1<53::AID-MRD6>3.0.CO;2-V 3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Zhou, C. J., Wang, D. H., Niu, X. X., Kong, X. W., Li, Y. J., Ren, J., Zhou, H. X., Lu, A., Zhao, Y. F. and Liang, C. G. (2016). High survival of mouse oocytes using an optimized vitrification protocol. Scientific Reports, 6, 19465. doi: 10.1038/srep19465 CrossRefGoogle ScholarPubMed
Zhu, Z. Y., Chen, D. Y., Li, J. S., Lian, L., Lei, L., Han, Z. M. and Sun, Q. Y. (2003). Rotation of meiotic spindle is controlled by microfilaments in mouse oocytes. Biology of Reproduction, 68(3), 943946. doi: 10.1095/biolreprod.102.009910 CrossRefGoogle ScholarPubMed
Zhu, Y., Jiang, Y. H., He, Y. P., Zhang, X., Sun, Z. G., Jiang, M. X. and Wang, J. (2015). Knockdown of regulator of G-protein signalling 2 (Rgs2) leads to abnormal early mouse embryo development in vitro . Reproduction, Fertility, and Development, 27(3), 557566. doi: 10.1071/RD13269 CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhu et al. supplementary material

Tables S1-S4

Download Zhu et al. supplementary material(File)
File 20.8 KB