Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T04:31:54.636Z Has data issue: false hasContentIssue false

Volterra-type operators on the minimal Möbius-invariant space

Published online by Cambridge University Press:  13 June 2022

Huayou Xie
Affiliation:
Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, P. R. China e-mail: xiehy33@mail2.sysu.edu.cn
Junming Liu*
Affiliation:
School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong 510520, P. R. China
Saminathan Ponnusamy
Affiliation:
Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India Department of Mathematics, Petrozavodsk State University, ul. Lenina 33, 185910 Petrozavodsk, Russia e-mail: samy@iitm.ac.in
*
Junming Liu is the corresponding author. e-mail: jmliu@gdut.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

In this note, we mainly study operator-theoretic properties on the Besov space $B_{1}$ on the unit disk. This space is the minimal Möbius-invariant space. First, we consider the boundedness of Volterra-type operators. Second, we prove that Volterra-type operators belong to the Deddens algebra of a composition operator. Third, we obtain estimates for the essential norm of Volterra-type operators. Finally, we give a complete characterization of the spectrum of Volterra-type operators.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

1 Introduction and preparation

In this paper, $\mathbb {D}$ denotes the open unit disk and $\mathbb {T}$ be the unit circle. Let $H(\mathbb {D})$ be the space of all analytic functions on $\mathbb {D}$ . For $0<p<\infty $ , the Hardy space $H^p$ consists of analytic functions $f\in \mathbb {D}$ such that

$$ \begin{align*}\|f\|^p_{H^p}=\sup_{0\leq r<1}\frac{1}{2\pi}\int^{2\pi}_{0}|f(re^{i\theta})|^p\,d\theta<\infty. \end{align*} $$

If $p=\infty $ , then $H^{\infty }$ is the space of bounded analytic functions f on $H(\mathbb {D})$ with

$$ \begin{align*}\|f\|_{\infty}=\sup\{|f(z)|:z\in \mathbb{D}\}. \end{align*} $$

For $0<p<\infty $ , the Bergman space $A^p$ consists of all functions f analytic on $\mathbb {D}$ such that

$$ \begin{align*}\|f\|^p_{A^p}=\int_{\mathbb{D}}|f(z)|^p \,dA(z)<\infty, \end{align*} $$

where $dA(z)$ is the normalized Lebesgue area measure on $\mathbb {D}$ . It is clear that $H^p\subset A^p$ . Moreover, $H^p\subset A^{2p}$ and $\|f\|_{A^{2p}}\leq \|f\|_{H^p}$ for $0<p<\infty $ . See [Reference Vukotić44] for example.

The Dirichlet-type space $\mathcal {D}^p$ is the set of all functions $f\in H(\mathbb {D})$ with

$$ \begin{align*}\|f\|^p_{\mathcal{D}^p}=|f(0)|^p+\int_{\mathbb{D}}|f'(z)|^p \,dA(z)<\infty. \end{align*} $$

The space of all conformal automorphisms of $\mathbb {D}$ forms a group, called the Möbius group, and is denoted by $\mathrm {Aut}\, (\mathbb {D})$ . It is well known that $\varphi $ belongs to $ \mathrm {Aut}\, (\mathbb {D})$ if and only if there exists a real number $\theta $ and a point $a\in \mathbb {D}$ such that

$$ \begin{align*} \varphi(z)=e^{i\theta}\sigma_{a}(z) ~\mbox{ and }~ \sigma_{a}(z)=\frac{a-z}{1-\overline{a}z}, \quad z\in\mathbb{D}. \end{align*} $$

Let X be a Banach space of analytic functions on $\mathbb {D}$ . Then X is said to be Möbius-invariant whenever $f\circ \varphi \in X$ for all $f\in X$ and $\varphi \in \mathrm {Aut}\, (\mathbb {D})$ and $\|f\circ \varphi \|_{X}=\|f\|_{X}$ .

For $1<p<\infty $ , the Besov space $B_p$ consists of analytic functions f on $\mathbb {D}$ such that

$$ \begin{align*}\int_{\mathbb{D}}(1-|z|^2)^{p-2}|f'(z)|^{p}\,dA(z)<\infty. \end{align*} $$

The norm of $B_p$ is defined as

$$ \begin{align*}\|f\|_{B_p}=|f(0)|+\left(\int_{\mathbb{D}}(1-|z|^2)^{p-2}|f'(z)|^{p}\,dA(z)\right)^{\frac{1}{p}}. \end{align*} $$

When $p=\infty $ , $B_{\infty }=: \mathcal {B}$ is called the classical Bloch space. We define a norm on $\mathcal {B}$ as

$$ \begin{align*}\|f\|_{\mathcal{B}}=|f(0)|+\sup_{z\in\mathbb{D}}(1-|z|^2)|f'(z)|<\infty. \end{align*} $$

When $p=2$ , $B_2=:\mathcal {D}$ is the classical Dirichlet space. When $p=1$ , we get the analytic Besov space $B_1$ , which is the minimal Möbius-invariant space consisting of all functions $f\in H(\mathbb {D})$ with

$$ \begin{align*}f(z)=\sum^{\infty}_{k=1}c_k\sigma_{a_k}(z), \end{align*} $$

where the sequences $\{c_k\}_{k\geq 1}\in \ell ^1$ and $\{a_k\}_{k\geq 1}\in \mathbb {D}$ . An equivalent norm of $B_1$ is defined as

$$ \begin{align*}\|f\|_{B_1}=|f(0)|+|f'(0)|+\int_{\mathbb{D}}|f''(z)|\,dA(z). \end{align*} $$

Arazy, Fisher, and Peetre [Reference Arazy, Fisher and Peetre5] first studied minimal Möbius-invariant space systematically. More results related to minimal Möbius-invariant space may be seen from [Reference Bao and Wulan6, Reference Blasco7, Reference Colonna and Li9, Reference Mitsis and Papadimitrakis32, Reference Ohno and Pavlović33, Reference Wulan and Xiong45].

Now, we define several operators on $B_1$ . For $g\in H(\mathbb {D})$ , the multiplication operator $M_g$ on $B_1$ is defined as

$$ \begin{align*}(M_{g})f(z)=f(z)g(z),~ f\in B_1,~ z\in\mathbb{D}. \end{align*} $$

The differentiation operator is given by $Df=f'$ for each $f\in H(\mathbb {D})$ . Given $g\in H(\mathbb {D})$ , the Volterra-type operator $T_g$ is defined as

$$ \begin{align*}(T_gf)(z)=\int^{z}_{0}f(w)g'(w)\,dw, ~\mbox{ for all } f\in B_1. \end{align*} $$

When $g(z)=z$ , the operator $T_zf(z)=\int ^{z}_{0}f(w)dw$ becomes the simplest Volterra operator. An integral operator related to $T_g$ , denoted by $I_g$ , is defined as

$$ \begin{align*}(I_gf)(z)=\int^{z}_{0}f'(w)g(w)\,dw, ~\mbox{ for all } f\in B_1. \end{align*} $$

The Volterra-type operator $T_g$ was originally studied by Pommerenke [Reference Pommerenke38]. Later, a series of articles appeared on the study of Volterra-type integration operators on classical spaces of analytic functions, such as Hardy spaces, Bergman spaces, and Dirichlet-type spaces. For more details, please refer to [Reference Aleman and Cima1, Reference Aleman and Siskakis3, Reference Aleman and Siskakis4, Reference Galanopoulos, Girela and Peláez16, Reference Girela and Peláez18]. In [Reference Čučković and Paudyal13], Čučković and Paudyal describe the lattice of the closed invariant subspaces of Volterra-type operators. Lin, Liu, and Wu [Reference Lin, Liu and Wu22] generalized some of the works of [Reference Čučković and Paudyal13] to the general case when $1\leq p<\infty $ , and obtained the boundedness of the Volterra-type operators $T_g$ and $I_g$ on the derivative Hardy space $S_p(\mathbb {D})$ . And then, they also considered strict singularity of Volterra-type operators on Hardy spaces in [Reference Lin, Liu and Wu23]. Meanwhile, Lin [Reference Lin21] characterized the boundedness and compactness of the Volterra-type operators between Bloch-type spaces and weighted Banach spaces. In [Reference Miihkinen, Pau, Perälä and Wang31], Miihkinen et al. completely characterize the boundedness of the Volterra-type operators acting from the weighted Bergman spaces to the Hardy spaces of the unit ball.

In this paper, we mainly study the operator-theoretic properties in minimal Möbius-invariant space $B_1$ . The structure of this article is as follows. In Section 2, we discuss the boundedness of the Volterra operator on $B_1$ . In Section 3, it is shown whether the integral operator belongs to Deddens algebras. In Section 4, we will be concerned with the essential norms of integral operators on $B_1$ . Section 5 is devoted to the study of the spectrum of integral operators on $B_1$ .

Throughout this paper, we use the following convention. For two nonnegative functions F and G defined on some function space $X,$ we write $F \lesssim G$ if $F(f) \leq C\cdot G(f)$ for all $f \in X$ and for some positive constant C which is independent of F and $G.$ Denote by $F\approx G$ whenever $F\lesssim G \lesssim F$ .

2 Volterra-type operators on $B_1$

First, we need the following Hardy inequality.

Lemma 1 [Reference Duren15]

If $f\in H^1$ and $f(z)= \sum ^{\infty }_{n=0}a_nz^n$ , then

$$ \begin{align*}\sum^{\infty}_{n=0}\frac{|a_n|}{n+1}\leq\pi\|f\|_{H^1}. \end{align*} $$

The following lemma is a classic exercise in mathematical analysis, but it might be worth to give a brief details of the proof for completeness.

Lemma 2 Suppose that $f(x)$ is a continuously increasing function on $[a,b]$ . Then,

$$ \begin{align*}\int^{b}_{a}xf(x)dx\geq\frac{a+b}{2}\int^{b}_{a}f(x)\,dx. \end{align*} $$

Proof As $f(x)$ is monotonically increasing on $[a,b]$ , the “integral mean value theorem” shows that there exists a $\xi \in [a,b]$ such that

$$ \begin{align*} \int^{b}_{a}\left(x-\frac{a+b}{2}\right)f(x)\,dx=&f(a)\int^{\xi}_{a}\left(x-\frac{a+b}{2}\right)dx+f(b)\int^{b}_{\xi}\left(x-\frac{a+b}{2}\right)dx\\ =&\frac{1}{2}(f(b)-f(a))(a\xi+b\xi-\xi^2-ab)\\ =&\frac{1}{2}(f(b)-f(a))(b-\xi)(\xi-a)\geq0. \end{align*} $$

This completes the proof of the lemma.

Lemma 3 If $f\in \mathcal {D}^1$ , then $\|f\|_{H^1}\leq \|f\|_{\mathcal {D}^1}.$

Proof Let $f\in \mathcal {D}^1.$ Then, we can see that

$$ \begin{align*}|f(e^{i\theta})|-|f(0)|\leq|f(e^{i\theta})-f(0)|\leq\left|\int^1_0f'(re^{i\theta}) \,dr\right|\leq\int^1_0|f'(re^{i\theta})| \,dr. \end{align*} $$

Thus,

$$ \begin{align*} \|f\|_{H_1}=&\frac{1}{2\pi}\int^{2\pi}_{0}|f(e^{i\theta})| \,d\theta\\ \leq&\frac{1}{2\pi}\int^{2\pi}_{0}\left[|f(0)|+\int^{1}_{0}|f'(re^{i\theta})| \,dr\right]d\theta\\ \leq&|f(0)|+\frac{1}{2\pi}\int^{2\pi}_{0}\int^{1}_{0}|f'(re^{i\theta})| \,dr \,d\theta. \end{align*} $$

On the other hand,

$$ \begin{align*} \|f\|_{\mathcal{D}^1}=|f(0)|+\int_{\mathbb{D}}|f'(z)| \,dA(z) =&|f(0)|+\frac{1}{\pi}\int^{2\pi}_{0}\int^{1}_{0}r|f'(re^{i\theta})| \,dr \,d\theta. \end{align*} $$

By Hardy’s convexity theorem (see [Reference Mashreghi28, Reference Xiao and Zhu46]), we find that

$$ \begin{align*}F(r)=\frac{1}{2\pi}\int^{2\pi}_{0}|f'(re^{i\theta})|\,d\theta,\, ~0<r<1, \end{align*} $$

is a nondecreasing function of r. It follows from Lemma 2 that

$$ \begin{align*}\int^{1}_{0}F(r)dr\leq2\int^{1}_{0}rF(r) \,dr. \end{align*} $$

This shows that $\|f\|_{H^1}\leq \|f\|_{\mathcal {D}^1}$ .

Remark 1 In Lemma 3, set $f(z)=z$ . Then, we see that $1=\|z\|_{H^1}\leq \|z\|_{\mathcal {D}^1}=1$ , showing that the norm estimate is sharp. This improves the previous conclusion, namely, $\|f\|_{H^1}\leq 2\|f\|_{\mathcal {D}^1}$ from the works of Girela and Merchán [Reference Girela and Merchán17].

Lemma 4 If $f\in B_1$ , then $\|f\|_{\infty }\leq \pi \|f\|_{B_1}$ and $B_1\subset H^{\infty }$ .

Proof Assume that $f\in B_1$ and write $f(z)=\sum ^{\infty }_{k=0}a_kz^k$ . By Lemmas 1 and 3, we have

$$ \begin{align*} |f(z)|=\left|\sum^{\infty}_{k=0}a_kz^k\right|\leq\sum^{\infty}_{k=0}|a_kz^k| \leq&\sum^{\infty}_{k=0}|a_k| \leq \pi\|f'\|_{H^1}+|f(0)| \leq \pi\|f'\|_{\mathcal{D}^1}+|f(0)|\leq\pi\|f\|_{B_1}, \end{align*} $$

for all $z\in \mathbb {D}$ . Hence, we obtain that $\|f\|_{\infty }\leq \pi \|f\|_{B_1}$ .

Remark 2 In [Reference Lin, Liu and Wu22, Theorem 1], they obtained that $\|f\|_{\infty }\leq \pi \|f\|_{S^1}$ for each $f\in S^1$ , where the space $S^1$ is defined as $S^1=\{f\in H^1:f'\in H^1\}$ . The norm on $S^1$ is given by

$$ \begin{align*}\|f\|_{S^1}=|f(0)|+\|f'\|_{H^1}. \end{align*} $$

Moreover, we obtain the following norm estimate:

$$ \begin{align*} \|f\|_{\infty}\leq\pi\|f\|_{S^1}\leq\pi\|f\|_{B_1},\ \ \mbox{for all} f\in B_1. \end{align*} $$

In the following, we discuss the boundedness of $T_g$ and $I_g$ on minimal Möbius-invariant space.

Theorem 1 The operator $T_g$ is bounded on $B_1$ if and only if $g\in B_1$ . Moreover,

$$ \begin{align*}\|g-g(0)\|\leq \|T_g\|\leq (1+\pi) \|g-g(0)\|_{B_1}. \end{align*} $$

Proof Let $f\in B_{1}$ . By Hölder’s inequality and Lemma 3, we have

$$ \begin{align*} \int_{\mathbb{D}}|f'(z)g'(z)| \,dA(z)&\leq\left(\int_{\mathbb{D}}|f'(z)|^2 \, dA(z)\right)^{\frac{1}{2}}\left(\int_{\mathbb{D}}|g'(z)|^2 \,dA(z)\right)^{\frac{1}{2}} =\|f'\|_{A^2}\|g'\|_{A^2}\\ &\leq\|f'\|_{H^1}\|g'\|_{H^1} \\ &\leq\|f'\|_{\mathcal{D}^1}\|g'\|_{\mathcal{D}^1} \\ &\leq \|f\|_{B_1}\|g-g(0)\|_{B_1}. \end{align*} $$

Hence, we get

$$ \begin{align*} \|T_gf\|_{B_1}&=\|fg'\|_{\mathcal{D}^1(\mathbb{D})} = |f(0)g'(0)|+\!\int_{\mathbb{D}}|f'(z)g'(z)| \,dA(z)+\!\int_{\mathbb{D}}|f(z)g''(z)| \,dA(z)\\ &\leq \|f\|_{B_1}\|g-g(0)\|_{B_1}+\|f\|_{\infty}\|g-g(0)\|_{B_1}\\ &\leq (1+\pi) \|f\|_{B_1}\|g-g(0)\|_{B_1}, \end{align*} $$

showing that $T_g$ is a bounded operator on $B_1$ .

Conversely, assume that $T_g$ is a bounded operator on $B_1$ and let $f=1$ . Then, we obtain

$$ \begin{align*}\|T_g\|\geq\|T_g1\|_{B_1}\geq \|g-g(0)\|_{B_1}, \end{align*} $$

which gives that $g\in B_1$ . Thus,

$$ \begin{align*}\|g-g(0)\|\leq \|T_g\|\leq (1+\pi) \|g-g(0)\|_{B_1}.\\[-2.7pc] \end{align*} $$

For $0<p<\infty $ , $-2<q<\infty $ , and $0\leq s<\infty $ , we define the general family of function spaces $F(p,q,s)$ as the set of all analytic functions f on $\mathbb {D}$ such that

$$ \begin{align*}\|f\|^{p}_{p,q,s}=|f(0)|+\sup_{a\in \mathbb{D}}\int_{\mathbb{D}}|f'(z)|^{p}(1-|z|^2)^{q}g^{s}(z,a) \,dA(z)<\infty, \end{align*} $$

where $g(z,a)=\log \frac {1}{|\sigma _a(z)|}$ . These spaces were introduced by Zhao in [Reference Zhao47]. In 2003, Rättyä provided the following nth derivation characterization of functions in spaces $F(p,q,s)$ .

Lemma 5 [Reference Rättyä39, Theorem 3.2]

Let f be an analytic function on $\mathbb {D}$ , and let $0<p<\infty , -2<q<\infty $ , and $0\leq s<\infty $ . Let $n\in \mathbb {N}$ and $q+s>-1$ ; or $n=0$ and $q+s-p>-1$ . Then, $f\in F(p,q,s)$ if and only if

$$ \begin{align*}\sup_{a\in \mathbb{D}}\int_{\mathbb{D}}|f^{(n)}(z)|^p(1-|z|^2)^{np-p+q}(1-|\varphi_a(z)|^2)^s \,dA(z)<\infty. \end{align*} $$

For $p>0$ , the space $Z_p$ consists of all analytic functions f on $\mathbb {D}$ such that

$$ \begin{align*}\|f\|_{Z_p}=|f(0)|+\sup_{a\in \mathbb{D}}\int_{\mathbb{D}}|(f\circ\sigma_a(z))'|(1-|z|^2)^{p-1} \,dA(z)<\infty. \end{align*} $$

It is clear that $Z_1=F(1,-1,1)$ . For more results about $Z_{p}$ space, see [Reference Liu, Lou and Zhu25, Reference Zhu48].

Theorem 2 The operator $I_g$ is bounded on $B_1$ if and only if $g\in Z_{1}\cap H^{\infty }$ .

Proof Assume that $g \in Z_{1}\cap H^{\infty }$ . Using Lemma $6$ of [Reference Liu, Lou and Zhu25], we obtain that

$$ \begin{align*}\int_{\mathbb{D}}|f'(w)|\cdot|g'(w)| \,dA(w)\lesssim \|g\|_{Z_{1}} \left(|f'(0)|+\int_{\mathbb{D}}|f''(w)| \,dA(w)\right). \end{align*} $$

Thus, we have

$$ \begin{align*} &\|(I_gf)(z)\|_{B_1}=\|f'g\|_{\mathcal{D}^1}\\[3pt] & \quad \leq |f'(0)g(0)|+ \int_{\mathbb{D}}|f''(w)|\cdot|g(w)| \,dA(w)+\int_{\mathbb{D}}|f'(w)|\cdot|g'(w)| \,dA(w)\\[3pt] & \quad \lesssim |f'(0)g(0)|+ \|g\|_{\infty}\int_{\mathbb{D}}|f''(w)| \,dA(w)+\|g\|_{Z_{1}}\left(|f'(0)|+\int_{\mathbb{D}}|f''(w)| \,dA(w)\right)\\[3pt] & \quad \lesssim (\|g\|_{\infty}+\|g\|_{Z_{1}})\|f\|_{B_1} \end{align*} $$

for all $f\in B_1$ . This implies that $I_g$ is a bounded operator on $B_1$ .

Conversely, suppose that $I_g$ is a bounded operator on $B_1$ . For each $a\in \mathbb {D}$ , let $f(z)=\sigma _{a}(z)$ . Then, $\|f\|_{B_1}\lesssim 1$ and

$$ \begin{align*} \|I_g\| &\gtrsim \|I_gf\|_{B_1} =\|g(w)f'(w)\|_{\mathcal{D}^1}\\[3pt] &\geq \|g(w)f'(w)\|_{H^1} =\int^{2\pi}_{0}|g(e^{i\theta})|\cdot|\sigma'_{a}(e^{i\theta})| \,d\theta =\int^{2\pi}_{0}|g(\sigma_{a}(e^{i\theta}))| \,d\theta\\[3pt] &\geq |g(\sigma_{a}(0))|=|g(a)|, \end{align*} $$

which shows that $\|I_g\|\gtrsim \|g\|_{\infty }$ . Hence, $g\in H^{\infty }$ . Moreover,

$$ \begin{align*} \|I_g\| & \gtrsim \|I_g\sigma_a\|_{B_1}\\[3pt] &\geq\int_{\mathbb{D}}|\sigma'_{a}(w)|\cdot|g'(w)| \,dA(w)-\int_{\mathbb{D}}|\sigma"_{a}(w)|\cdot|g(w)| \,dA(w)\\[3pt] &\geq\int_{\mathbb{D}}|\sigma'_{a}(w)|\cdot|g'(w)| \,dA(w)-\|g\|_{\infty}\|\sigma_a\|_{B_1}, \end{align*} $$

from which it follows that

$$ \begin{align*}\|I_g\|+\|g\|_{\infty}\|\sigma_a\|_{B_1} \gtrsim \int_{\mathbb{D}}|\sigma'_{a}(w)|\cdot|g'(w)| \,dA(w). \end{align*} $$

This implies that $g\in Z_1$ . Therefore, $g\in Z_1\cap H^{\infty }$ . This completes the proof of the theorem.

Remark 3 Note that $B_1\subset Z_1\cap H^{\infty }.$ By Lemma 4, we know that $f\in H^{\infty }$ whenever $f\in B_1$ . Using the second derivation characterization of functions on $Z_1$ , we have

$$ \begin{align*} \|f\|_{Z_1}\approx |f(0)|+\sup_{a\in \mathbb{D}}\int_{\mathbb{D}}|f''(z)|(1-|\sigma_a(z)|^2) \,dA(z)\leq |f(0)|+\int_{\mathbb{D}}|f''(z)| \,dA(z)\leq\|f\|_{B_1}. \end{align*} $$

Then $f\in Z_1$ , and thus $B_1\subset Z_1\cap H^{\infty }$ .

Now, we define the space $B^0_1$ as

$$ \begin{align*}B^0_1=\{f\in B_1:f(0)=0\}. \end{align*} $$

The following theorem gives the connection between the Volterra operator $T_z$ on $\mathcal {D}^1$ and the multiplication operator $M_z$ on $B^0_1$ .

Theorem 3 The Volterra-type operator $T_{z}:\mathcal {D}^1\rightarrow B^0_1$ is bounded and invertible with $T^{-1}_z= D .$

Proof First, we show that $T_z(\mathcal {D}^1)=B^0_1.$ For $f\in \mathcal {D}^1$ , we consider

$$ \begin{align*}F(z):=(T_zf)(z)=\int^{z}_{0}f(w)\,dw. \end{align*} $$

Clearly, $F'=f\in \mathcal {D}^1$ so that $F\in B^0_1$ and $T_{z}(\mathcal {D}^1)\subseteq B^0_1.$

Conversely, for each $F\in B^0_1$ , we have $F' \in \mathcal {D}^1$ . Then,

$$ \begin{align*}(T_z(F'(z)))=\int^{z}_{0}F'(w)\,dw=F(z)-F(0)=F(z). \end{align*} $$

Then, $B^0_1 \subseteq T_{z}(\mathcal {D}^1)$ . This implies that $T_{z}(\mathcal {D}^1)=B^0_1$ .

Second, we show that $T_z:\mathcal {D}^1 \rightarrow B^0_1$ is a bounded isomorphism, and its inverse $T^{-1}_{z}= D.$ Recall from the above discussion that $(T_z(F'(z)))=F(z)$ for $F\in B^0_1$ . Then, for each $f\in \mathcal {D}^1$ , we have that $(D(T_zf))(z)=f(z)$ . This implies that $T_z$ is a bijective operator from $\mathcal {D}^1$ onto $B^0_1$ , since $T_z$ is linear and $T_z$ is an isomorphism from $\mathcal {D}^1$ onto $B^0_1$ .

Finally, we need to prove that $T_z$ is a bounded operator on $\mathcal {D}^1$ . For $f\in \mathcal {D}^1$ , we have

$$ \begin{align*}\|T_zf\|_{B_1}\lesssim ( |(T_zf)(0)|+\|f\|_{\mathcal{D}^1})\lesssim \|f\|_{\mathcal{D}^1}. \end{align*} $$

Therefore, $T_z$ is a bounded isomorphism from $\mathcal {D}^1$ onto $B^0_1$ .

Let us introduce an addition operator P defined as

$$ \begin{align*}(Pf)(z)=(M_zf)(z)+(T_zf)(z)\ \mbox{ for } f\in H(\mathbb{D}) \mbox{ and } z\in\mathbb{D}. \end{align*} $$

Theorem 4 Let $T_{z}:\mathcal {D}^1\rightarrow B^0_1$ and $M_z:B^0_1\rightarrow \mathcal {D}^1$ be the Volterra-type operator and the multiplication operator, respectively. Then, P is an operator on $\mathcal {D}^1$ with $P=T^{-1}_{z}M_zT_z.$

Proof Let $f\in \mathcal {D}^1$ and $F=T_zf$ . Then, we get

$$ \begin{align*} (Pf)(z)=&(M_zf)(z)+(T_zf)(z) =zf(z)+F(z) =D(zF(z)) =(T_z^{-1}M_zT_zf)(z), \end{align*} $$

which shows that $P=T^{-1}_{z}M_zT_z$ .

Theorem 5 If $f,g\in B_1$ , then $\|fg\|_{B_1}\leq (2\pi +2)\|f\|_{B_1}\|g\|_{B_1}$ .

Proof For $f,g\in B_1$ , we get

$$ \begin{align*} \|f g\|_{B_1}&=|f(0)g(0)|+|(fg)'(0)|\\& \quad +\int_{\mathbb{D}}|f''(w)g(w)+2f'(w)g'(w)+f(w)g''(w)| \,dA(w)\\& \leq (|f(0)|+|f'(0)|)(|g(0)|+|g'(0)|)+\int_{\mathbb{D}}|f''(w)g(w)| \,dA(w)\\& \quad +2\int_{\mathbb{D}}|f'(w)g'(w)| \,dA(w)+\int_{\mathbb{D}}|f(w)g''(w)| \,dA(w)\\&\leq\|g\|_{B_1}(|f(0)|+|f'(0)|) +\|g\|_{\infty} (\|f\|_{B_1}-|f(0)|-|f'(0)|)\\& \quad +2\|f\|_{B_1}\|g\|_{B_1}+\|f\|_{\infty}\int_{\mathbb{D}}|g''(w)| \,dA(w)\\&\leq\|g\|_{B_1}(|f(0)|+|f'(0)|)+\pi\|g\|_{B_1}(\|f\|_{B_1}-|f(0)|-|f'(0)|)\\& \quad +2\|f\|_{B_1}\|g\|_{B_1}+\pi\|f\|_{B_1}\|g\|_{B_{1}}\\&\leq(2\pi+2)\|f\|_{B_1}\|g\|_{B_1}, \end{align*} $$

and the proof is complete.

Remark 4 In [Reference Arazy, Fisher and Peetre5, Theorem 10], Arazy et al. obtained $\|fg\|\leq 7\|f\|\|g\|$ for $f,g\in B_1$ , in which they defined the norm of $f\in B_1$ as

$$ \begin{align*}\|f\|=\inf\left\{\sum^{\infty}_{k=1}|c_{k}|:f(z)=\sum^{\infty}_{k=1}c_k\sigma_{a_k}(z)\right\}. \end{align*} $$

Inspired by their work, we derived Theorem 5 and we are not sure whether the constant $2\pi +2$ in Theorem 5 is optimal or not.

3 Deddens algebras

Let $\mathcal {L}(X)$ denote the algebra of all bounded linear operators on a complex Banach space X. A nontrivial invariant subspace of an operator $A\in \mathcal {L}(X)$ is, by definition, a closed subspace M of X such that $M\neq \{0\}$ , $M\neq X$ , and $Ax\in M$ for every $x\in M$ ; or, briefly, $A(M)\subset M$ .

Let $A\in \mathcal {L}(X)$ . The operator T is said to belong to the Deddens algebra $\mathcal {D}_A$ if there exists $M=M(T)>0$ such that

$$ \begin{align*}\|A^nTf\|\leq M\|A^nf\| \end{align*} $$

for each $n\in \mathbb {N}$ and $f\in X$ .

The study of the Deddens algebra was originally introduced by Deddens [Reference Deddens14], where he assumed that A is an invertible operator and $\sup _{n\in \mathbb {N}}\|A^nTA^{-n}\|<\infty $ . Later, it received the attention of many scholars (see [Reference Deddens14, Reference Karaev and Mustafayev19, Reference Lacruz20, Reference Petrovic34Reference Petrovic and Sievewright37, Reference Sievewright42, Reference Todorov43]). Recently, Petrovic and Sievewright [Reference Petrovic and Sievewright37] studied the Deddens algebra associated with compact composition operators $C_{\varphi }$ on Hardy spaces, where A is not necessarily invertible, and they have demonstrated that the operators $M_g$ and $T_z$ belong to the Deddens algebra $\mathcal {D}_{C_{\varphi }}$ . It is worth to point out that compact operators on $H^2$ are not invertible.

Let us begin to present the boundedness of composition operators and multiplication operators on $B_1$ .

Lemma 6 [Reference Wulan and Xiong45]

Let $\varphi $ be an analytic self-map of $\mathbb {D}$ . Then, the composition operator $C_{\varphi }$ is bounded on $B_1$ if and only if

$$ \begin{align*}\sup_{a\in\mathbb{D}}\|C_{\varphi}\sigma_a\|_{B_1}<\infty. \end{align*} $$

In particular, we give another description of sufficiency condition for the boundedness of the composition operator in the following theorem.

Theorem 6 Let $\varphi $ be an analytic self-map of $\mathbb {D}$ such that $\varphi (0)=0$ . Then, the composition operator $C_{\varphi }$ is bounded on $B_1$ whenever $\varphi '\in Z_1\cap H^{\infty }$ .

Proof Suppose that $\varphi '\in Z_1\cap H^{\infty }$ . Then, we get

$$ \begin{align*} \|C_{\varphi}f\|_{B_1}&=\|f(\varphi(z))\|_{B_1}\\&=|f(\varphi(0))|+|f'(\varphi(0))\varphi'(0)|+\int_{\mathbb{D}}|f''(\varphi(w))\cdot(\varphi'(w))^2\\ & \quad + f'(\varphi(w))\cdot\varphi''(w)| \,dA(w)\\&\leq |f(\varphi(0))|+|f'(\varphi(0))\varphi'(0)|+\int_{\mathbb{D}}|f''(\varphi(w))\cdot(\varphi'(w))^2| \,dA(w) \\ & \quad +\int_{\mathbb{D}}|f'(\varphi(w))\cdot\varphi''(w)| \,dA(w)\\ &\lesssim \|f\|_{\infty}+\|\varphi'\|_{\infty} \|f\|_{B_{1}}+\|\varphi'\|^{2}_{\infty} \|f\|_{B_{1}} +\|\varphi\|_{Z_{1}} \|\varphi'\|_{\infty} \|f\|_{B_{1}} \\ &\lesssim (\|\varphi'\|^{2}_{\infty}+\|\varphi\|_{Z_{1}} \|\varphi'\|_{\infty}+ \|\varphi'\|_{\infty} +1)\|f\|_{B_1}, \end{align*} $$

which implies that $C_{\varphi }$ is bounded on $B_1$ if $\varphi '\in Z_1\cap H^{\infty }$ .

Theorem 7 Suppose that $M_g$ is a multiplication operator on $B_1$ . Then, $M_g$ is bounded if and only if $g\in B_1$ .

Proof For any $f\in B_1$ , if $g\in B_1$ , we have $M_g$ is bounded on $B_1,$ by Theorem 5.

Conversely, let $M_g$ be a bounded operator on $B_1.$ Then, with $f=1$ , we get $\|M_g\|\geq \|M_g1\|_{B_1}=\|g\|_{B_1}$ , which implies that $g\in B_1$ .

In the following theorem, we will consider the algebra $\mathcal {D}_{C_{\varphi }}$ , in which the operator $C_{\varphi }$ is a bounded composition operator. For $n\in \mathbb {N}$ , it clear that $C^{n}_{\varphi }f=f\circ \varphi \circ \cdots \circ \varphi $ . For simplicity of the notation, we write $\varphi _{n}$ instead of $\varphi \circ \cdots \circ \varphi $ .

Theorem 8 Let $g\in B_1$ , and let $\varphi $ be an analytic self-map of $\mathbb {D}$ with $\varphi (0)=0$ such that $C_{\varphi }$ is bounded on $B_1$ . Then, the operators $M_g$ , $T_g$ , and $I_g$ belong to the Deddens algebra $\mathcal {D}_{C_{\varphi }}$ .

Proof For each $n\in \mathbb {N}$ , we see that

$$ \begin{align*} C^n_{\varphi}M_gf=&C^{n}_{\varphi}(gf) =(g\circ\varphi_{n})(f\circ\varphi_{n}) =M_{g\circ\varphi_n}C^{n}_{\varphi}f. \end{align*} $$

Since $\varphi _{n}(\mathbb {D})\subset \mathbb {D}$ , it follows that

$$ \begin{align*}\|M_{g\circ\varphi_n}f\|_{B_1}=\|(g\circ\varphi_n)f\|_{B_1}\lesssim\|g\|_{B_1}\|f\|_{B_1}, \end{align*} $$

and therefore

$$ \begin{align*}\|C^n_{\varphi}M_gf\|_{B_1}=\|M_{g\circ\varphi_n}C^{n}_{\varphi}f\|_{B_1}\lesssim\|g\|_{B_1}\|C^{n}_{\varphi}f\|_{B_1}, \end{align*} $$

where $f\in B_{1}(\mathbb {D})$ . This implies that $M_g\in \mathcal {D}_{C_{\varphi }}$ .

Next, we have

$$ \begin{align*}C^n_{\varphi}T_gf(z)=C^n_{\varphi}\left(\int^{z}_{0}f(w)g'(w)dw\right)=\int^{\varphi_{n}(z)}_{0}f(w)g'(w) \,dw. \end{align*} $$

Since $\varphi $ is an analytic self-map of $\mathbb {D}$ satisfying $\varphi (0)=0$ , we have $\varphi _{n}(0)=0$ , and therefore

$$ \begin{align*} T_{g\circ\varphi_n}C^{n}_{\varphi}f(z)&=T_{g\circ\varphi_n}\left(f(\varphi_n(z))\right)\\ &=\int^{z}_{0}f(\varphi_{n}(w))g'(\varphi_{n}(w))\varphi_{n}'(w) \,dw\\ &=\int^{\varphi_{n}(z)}_{0}f(w)g'(w) \,dw, \end{align*} $$

where $f\in B_1$ . It shows that $C^n_{\varphi }T_g=T_{g\circ \varphi _n}C^{n}_{\varphi }$ . By Theorem 1, we have

$$ \begin{align*} \|C^{n}_{\varphi}T_gf(z)\|_{B_1}=&\|T_{g\circ\varphi_n}C^{n}_{\varphi}f(z)\|_{B_1} \lesssim \|g\circ\varphi_n\|_{B_1}\|C^{n}_{\varphi}f(z)\|_{B_1} \lesssim \|g\|_{B_1}\|C^{n}_{\varphi}f(z)\|_{B_1}, \end{align*} $$

which gives $T_g\in \mathcal {D}_{C_{\varphi }}$ .

Finally, we have

$$ \begin{align*}C^n_{\varphi}I_gf(z)=C^{n}_{\varphi}\left(\int^{z}_{0}f'(w)g(w) \,dw\right)=\int^{\varphi_{n}(z)}_{0}f'(w)g(w) \,dw \end{align*} $$

and

$$ \begin{align*} I_{g\circ\varphi_{n}}C^n_{\varphi}f(z)&=I_{g\circ\varphi_{n}}(f(\varphi_{n}(z)))\\ &=\int^{z}_{0}f'(\varphi_{n}(w))g(\varphi_{n}(w))\varphi_{n}'(w) \,dw\\ &=\int^{\varphi_n(z)}_{0}f'(w)g(w) \,dw, \end{align*} $$

where $f\in B_1$ . Therefore, $C^n_{\varphi }I_g=I_{g\circ \varphi _{n}}C^n_{\varphi }$ . By Theorem 2 and Remark 3, we find that

$$ \begin{align*}\|C^n_{\varphi}I_gf(z)\|_{B_1}=\|I_{g\circ\varphi_{n}}C^n_{\varphi}f(z)\|_{B_1} \lesssim\|g\circ\varphi_{n}\|_{B_1}\|C^n_{\varphi}f(z)\|_{B_1}\lesssim\|g\|_{B_1}\|C^n_{\varphi}f(z)\|_{B_1} \end{align*} $$

for all $f\in B_1$ . We thus deduce that $I_g\in \mathcal {D}_{C_{\varphi }}$ .

4 Essential norms of Volterra-type operators on $B_{1}$

Suppose that X is a Banach space and T is a bounded linear operator on X. The essential norm of T is defined to be

$$ \begin{align*}\|T\|_{e}=\inf \{\|T-K\|:K ~\text{is a compact operator on } B_1\}. \end{align*} $$

Obviously, the essential norm of T is 0 if and only if T is compact. For more results, we invite the reader to refer to [Reference Liu, Liu, Xia and Yu26, Reference Shargorodsky41]. In this section, we characterize the essential norm of linear operator on $B_1$ , which generalizes the conclusion of Liu et al. [Reference Liu, Lou and Xiong24]

Theorem 9 Every bounded operator $T_g$ on $B_1$ is compact.

Proof By definition, we know $\|T_{g}\|_{e}\geq 0$ .

Next, we show that $\|T_{g}\|_{e}\leq 0$ . To do this, we define the following operators:

$$ \begin{align*}T_{g_r}f:=\int^z_0rf(w)g_r'(w) \,dw, \end{align*} $$

where $g_r(z)=g(rz)$ and $r\in (0,1)$ . It is easy to see that $T_{g_r}$ is a compact operator on $B_1$ for $g\in B_1$ . In fact, if $T_{g}$ is a bounded operator on $B_1$ , then $g\in B_1$ . Suppose that $\{ f_{n}\}_{n=1}^{\infty } \subset B_1$ with $\|f_{n}\|_{B_1}\leq 1$ , and $f_{n}\rightarrow 0$ uniformly on compact subsets of $\mathbb {D}$ . Then,

$$ \begin{align*} \|T_{g_r}f_n\|_{B_1}&=\|f_{n}(rz)g'(rz)\|_{\mathcal{D}^1}\\ &\lesssim \int_{\mathbb{D}}|f'_{n}(rz)g'(rz)| \,dA(z)+\int_{\mathbb{D}}|f_{n}(rz)g''(rz)| \,dA(z)\\ &=\int_{\mathbb{D}_{\delta_1}}|f'_{n}(rz)g'(rz)| \,dA(z)+\int_{\mathbb{D}\backslash \mathbb{D}_{\delta_1}}|f'_{n}(rz)g'(rz)| \,dA(z)\\ & \quad +\int_{\mathbb{D}_{\delta_1}}|f_{n}(rz)g''(rz)| \,dA(z)+\int_{\mathbb{D}\backslash \mathbb{D}_{\delta_1}}|f_{n}(rz)g''(rz)| \,dA(z), \end{align*} $$

where $\delta _1<1,$ and $\mathbb {D}_{\delta _1}= \{z: |z|<\delta _1\}$ are compact subsets of $\mathbb {D}$ .

Note that

$$ \begin{align*}\int_{\mathbb{D}}|f'_{n}(rz)g'(rz)| \,dA(z)\kern1.4pt{\lesssim}\kern1.4pt \|f_{n}\|_{B_1} \|g\|_{B_1} ~\text{ and }~\! \int_{\mathbb{D}}\kern-1pt|f_{n}(rz)g''(rz)| \,dA(z)\kern1.4pt{\lesssim}\kern1.4pt \|f_{n}\|_{B_1} \|g\|_{B_1}\kern-1pt. \end{align*} $$

Using the theorem of absolute continuity of Lebesgue measure, we conclude that

$$ \begin{align*}\int_{\mathbb{D}\backslash \mathbb{D}_{\delta_1}}|f'_{n}(rz)g'(rz)| \,dA(z) <\epsilon ~\text{ and }~ \int_{\mathbb{D}\backslash \mathbb{D}_{\delta_1}}|f_{n}(rz)g''(rz)| \,dA(z) <\epsilon. \end{align*} $$

On the other hand, using a basic result of complex analysis (see page 151 of [Reference Conway12]), we know that if $f_{n}\rightarrow 0,$ then $f_{n}' \rightarrow 0$ uniformly on compact subsets of $\mathbb {D}$ . Consequently,

$$ \begin{align*}\int_{\mathbb{D}_{\delta_1}}|f'_{n}(rz)g'(rz)| \,dA(z) ~\text{ and }~ \int_{\mathbb{D}_{\delta_1}}|f_{n}(rz)g''(rz)| \,dA(z) \end{align*} $$

converge to $0$ when $n\rightarrow \infty $ . This implies that $T_{g,r}$ is compact.

Meanwhile, we have

$$ \begin{align*}\|T_{g}\|_{e}\leq\|T_{g}-T_{g_r}\|=\|T_{g-g_r}\|\lesssim\|g-g_r\|_{B_1} \end{align*} $$

for $r\in (0,1)$ . Similarly, with the above computation, we have

$$ \begin{align*}\lim_{r\rightarrow 1^{-}}\|g-g_r\|_{B_1}=0, \end{align*} $$

so that $\|T_{g}\|_{e}\leq 0$ . Hence, we deduce that $\|T_{g}\|_{e}=0$ , which completes the proof.

Theorem 10 If $I_{g}$ is bounded operator on $B_1$ , then $\|g\|_{\infty }\leq \|I_{g}\|_{e} \lesssim ( \|g\|_{\infty }+\|g\|_{Z_{1}}).$

Proof From the proof of Theorem 2, we have

$$ \begin{align*}\|I_g\|_{e}=\inf\|I_g-K\|\leq\|I_g\|\leq C(\|g\|_{\infty}+\|g\|_{Z_{1}}), \end{align*} $$

where C is a positive constant.

We next show that $\|I_g\|_{e}\geq \|g\|_{\infty }$ . Choose $a_n\in \mathbb {D}$ such that $|a_n|\rightarrow 1$ as $n\rightarrow \infty $ . Let $f_n(z)=\sigma _{a_n}(z)-a_n$ . It is obvious that $\|f_n\|_{B_1}=1$ . Since $\{f_n\}$ converges to zero uniformly on compact subsets of $\mathbb {D}$ , for every compact operator K on $B_1$ , we obtain $\|Kf_n\|_{B_1}\rightarrow 0$ as $n\rightarrow \infty $ . Therefore,

$$ \begin{align*} \|I_g-K\|&\geq\lim_{n\rightarrow\infty}\sup\|(I_g-K)f_n\|_{B_1}\\ &\geq\lim_{n\rightarrow\infty}\sup(\|I_gf_n\|_{B_1}-\|Kf_n\|_{B_1})\\ &=\lim_{n\rightarrow\infty}\sup\|I_gf_n\|_{B_1}. \end{align*} $$

Similarly to the proof of Theorem 2, we get

$$ \begin{align*} \|I_gf_n\|_{B_1}=\|g(z)f'_n(z)\|_{\mathcal{D}^{1}}\geq|g(\sigma_{a_n}(0))|=|g(a_{n})|. \end{align*} $$

As the choice of the sequence $\{a_n\}\subset \mathbb {D}$ is arbitrary, we have $\|I_g\|_{e}\geq \|g\|_{\infty }$ , which completes the proof.

Theorem 11 Every bounded operator $M_g$ on $B_1$ is compact.

Proof The proof is similar to Theorem 9, so we omit its details.

5 Spectrum of Volterra-type operators on $B_{1}(\mathbb {D})$

The spectrum of integral operators on different spaces has attracted the attention of many scholars. The spectra of integral operators on weighted Bergman spaces are characterized by Aleman and Constantin [Reference Aleman and Constantin2]. Later, Constantin [Reference Constantin10] obtained the spectrum of Volterra-type operators on Fock spaces. Mengestie [Reference Mengestie29] studied the spectrum of Volterra-type operators on Fock–Sobolev spaces. Mengestie [Reference Mengestie30] also obtained the spectrum of $T_g$ in terms of a closed disk of radius twice the coefficient of the highest degree term in a polynomial expansion of g. For more results, see [Reference Bonet8, Reference Malman27]. Recently, Lin et al. described the spectra of the multiplication operator and the Volterra-type operator $I_g$ in [Reference Lin, Liu and Wu23], respectively. Inspired by the above results, it is natural to study the spectra of the multiplication operator and the Volterra-type operators on $B_{1}$ .

Theorem 12 Suppose that $M_g$ is bounded on $B_1$ . Then, we have $\sigma (M_g)=\overline {g(\mathbb {D})}.$

Proof Suppose that $\lambda \notin \sigma (M_g)$ . Then, $M_g-\lambda I$ is invertible. As $1 \in B_1,$ there exists an $f\in B_1$ such that $(g(z)-\lambda )f(z)=1$ for all $z\in \mathbb {D}$ , which implies that $\lambda \notin g(\mathbb {D})$ . Thus, $g(\mathbb {D})\subset \sigma (M_g)$ .

For the other way inclusion, we let $\lambda \notin \overline {g(\mathbb {D})}$ . Then, we can choose a $t>0$ such that $|g(z)-\lambda |>t$ for all $z\in \mathbb {D}$ . This shows that $h=(g-\lambda )^{-1}$ is a bounded analytic function on $\mathbb {D}$ . For all $g\in B_1$ , we get

$$ \begin{align*} \|h\|_{B_1}&\leq t(|h(0)|+\|h'\|_{\mathcal{D}^{1}})\\&\leq \left(\frac{1}{|g(0)-\lambda|}+\|\frac{g'}{(g-\lambda)^2}\|_{\mathcal{D}^{1}}\right)\\[-14pt] \\&\leq \left(\frac{1}{|g(0)-\lambda|}+\left|\frac{g'(0)}{(g(0)-\lambda)^2}\right| +\int_{\mathbb{D}}\left|\frac{g''(z)}{(g(z)-\lambda)^2}-\frac{2(g')^2}{(g(z)-\lambda)^{3}}\right| \,dA(z)\right)\\&\lesssim \|g\|_{B_1}+ \|g\|^2_{B_1}. \end{align*} $$

Hence, $h\in B_1$ . Then, $M_h$ is bounded on $B_1,$ by Theorem 7. Since $M_h=M_{(g-\lambda )^{-1}}=M_{g-\lambda }^{-1}$ , we see that $M_{g-\lambda }$ is invertible, and thus $\lambda \notin \sigma (M_g)$ . Therefore, $\sigma (M_g)\subset \overline {g(\mathbb {D})}$ . Since the spectrum set is closed, we conclude that $\sigma (M_g)=\overline {g(\mathbb {D})}$ .

Lemma 7 [Reference Rudin40]

Let T be a bounded linear operator on a Banach space X, and let T be compact. If $\dim X=\infty $ , then $\sigma (T)=\{0\} {\cup} $ {eigen values of T}.

Theorem 13 Suppose that $T_g$ is a bounded operator on $B_1$ . Then, $\sigma (T_g)=\{0\}.$

Proof Let $T_g$ be a bounded operator on $B_1.$ Then, $T_g$ is compact, by Theorem 9. By Lemma 7, we obtain $0\in \sigma (T)$ .

Next, we prove that $T_g$ has no nonzero eigenvalue. Assume that $T_g$ has an eigenvalue $\lambda \neq 0$ with eigenvector $f.$ Then,

(1) $$ \begin{align} T_{g}f(z)=\int^{z}_{0}f(w)g'(w) \,dw=\lambda f(z). \end{align} $$

Differentiating equation (1) with respect to z, we get

$$ \begin{align*}f(z)g'(z)=\lambda f'(z). \end{align*} $$

All nonzero solutions of this equation are of the form $f(z)=ce^{\frac {g(z)}{\lambda }}$ for some $c\neq 0$ . Setting $z=0$ in (1) shows that $0=\lambda f(0)$ , which contradicts the last relation about $f.$ Therefore, there is no nonzero eigenvalue for $T_g$ . From this, we deduce that $\sigma (T_g)=\{0\}$ .

Theorem 14 If $I_g$ is a bounded operator on $B_1$ , then

$$ \begin{align*}\sigma(I_g)=\{0\}\cup \overline{g(\mathbb{D})}. \end{align*} $$

Proof For any constant function a, we have

$$ \begin{align*}(I_ga)(z)=\int_{0}^{z}a'(w)g(w)\,dw=0, \end{align*} $$

which gives $0\in \sigma (I_g)$ .

Suppose that $\lambda \in \mathbb {C}\backslash \{0\}$ . Note that the equation

$$ \begin{align*}f-\frac{1}{\lambda}I_gf=h,~\hbox {for} ~h\in B_1, \end{align*} $$

has a unique analytic solution

$$ \begin{align*}f(z)=R_{\lambda,g}h(z)=\int^{z}_{0}\frac{h'(\xi)}{1-\frac{1}{\lambda}g(\xi)} \,d\xi+h(0)=I_{(1-\frac{1}{\lambda}g)^{-1}}h(z)+h(0) \end{align*} $$

(see [Reference Constantin and Persson11] for more details). Hence, the resolvent set $\rho (I_g)$ of the bounded operator $I_g$ consists precisely of all points $\lambda \in \mathbb {C}$ for which $R_{\lambda ,g}$ is a bounded operator on $B_1$ .

If $\lambda \in \mathbb {C}\backslash (\{0\}\cup \overline {g(D)})$ , then it is clear that $1-\frac {1}{\lambda }g(z)$ is bounded away from $0$ , which implies that $\frac {1}{1-\frac {1}{\lambda }g(z)} \in H^{\infty }$ . If $I_g$ is a bounded operator on $B_1$ , then $g\in H^{\infty }\bigcap Z_{1}$ by Theorem 2. Moreover, it is easy to show that $ \frac {1}{1-\frac {1}{\lambda }g(z)} \in Z_{1}.$ This implies that the operator $R_{\lambda ,g}$ is a bounded operator on $B_1$ . It follows that $\mathbb {C}\backslash (\{0\}\cup \overline {g(\mathbb {D})})\subset \rho (I_g)$ . Thus, $\sigma (I_g)\subset (\{0\}\cup \overline {g(\mathbb {D})})$ .

On the other hand, if $\lambda \in g(\mathbb {D})$ and $\lambda \neq 0$ , then $\frac {1}{1-\frac {1}{\lambda }g(\xi )}$ is not bounded, which shows that the operator $R_{\lambda ,g}$ is not bounded on $B_1$ . Therefore, we obtain that $g(\mathbb {D})\backslash \{0\}\subset \sigma (I_g)$ . This together with the fact that $0\in \sigma (I_g)$ shows that

$$ \begin{align*}g(\mathbb{D})\cup\{0\}\subset\sigma(I_g)\subset \overline{g(\mathbb{D})}\cup\{0\}. \end{align*} $$

Since the spectrum $\sigma (I_g)$ is closed, we deduce that $\sigma (I_g)=\overline {g(\mathbb {D})}\cup \{0\}$ .

Acknowledgement

We would like to thank the referee for his/her valuable comments.

Footnotes

This work was supported by NNSF of China (Grant Nos. 11801094 and 12126203).

References

Aleman, A. and Cima, J., An integral operator on ${H}^p$ and Hardy’s inequality . J. Anal. Math. 85(2001), 157176.CrossRefGoogle Scholar
Aleman, A. and Constantin, O., Spectra of integration operators on weighted Bergman spaces . J. Anal. Math. 109(2009), 199231.CrossRefGoogle Scholar
Aleman, A. and Siskakis, A., Integration operators on Bergman spaces . Indiana Univ. Math. J. 46(1997), no. 2, 337356.10.1512/iumj.1997.46.1373CrossRefGoogle Scholar
Aleman, A. and Siskakis, A., An integral operator on ${H}^p$ . Complex Variables Theory Appl. 28(2001), no. 2, 149158.10.1080/17476939508814844CrossRefGoogle Scholar
Arazy, J., Fisher, S. D., and Peetre, J., Möbius invariant function spaces . J. Reine Angew. Math. 363(1985), 110145.Google Scholar
Bao, G. and Wulan, H., The minimal Möbius invariant space . Complex Var. Elliptic Equ. 59(2014), no. 2, 190203.10.1080/17476933.2012.727408CrossRefGoogle Scholar
Blasco, O., Composition operators on the minimal space invariant under Möbius transformations . In: A. Carbery, P. Duren, D. Khavinson, and A. Siskakis (eds.), Complex and harmonic analysis, DEStech Publications, Lancaster, 2007, pp. 157166.Google Scholar
Bonet, J., The spectrum of Volterra operators on Korenblum type spaces of analytic functions . Integr. Equ. Oper. Theory 91(2019), no. 5, Article no. 46, 16 pp.CrossRefGoogle Scholar
Colonna, F. and Li, S., Weighted composition operators from the minimal Möbius invariant space into the Bloch space . Mediterr. J. Math. 10(2013), no. 1, 395409.CrossRefGoogle Scholar
Constantin, O., A Volterra-type integration operator on Fock spaces . Proc. Amer. Math. Soc. 47(2012), no. 12, 42474257.10.1090/S0002-9939-2012-11541-2CrossRefGoogle Scholar
Constantin, O. and Persson, A., The spectrum of Volterra-type integration operators on generalized Fock spaces . Bull. Lond. Math. Soc. 47(2015), no. 6, 958963.Google Scholar
Conway, J., Functions of one complex variable. 2nd ed., Graduate Texts in Mathematics, 11, Springer, New York–Berlin, 1978.CrossRefGoogle Scholar
Čučković, Ž. and Paudyal, B., Invariant subspaces of the shift plus complex Volterra operator . J. Math. Anal. Appl. 426(2015), 11741181.CrossRefGoogle Scholar
Deddens, J., Another description of nest algebras. In: Hulbert space operators (Proc. Conf., Calif. State Univ., Long Beach, CA, 1977), Lecture Notes in Mathematics, 693, Springer, Berlin, 1978, pp. 7786.Google Scholar
Duren, P., Theory of Hp spaces, Academic Press, New York, 1970.Google Scholar
Galanopoulos, P., Girela, D., and Peláez, J., Multipliers and integration operators on Dirichlet spaces . Trans. Amer. Math. Soc. 363(2011), no. 4, 18551886.CrossRefGoogle Scholar
Girela, D. and Merchán, N., Hankel matrices acting on the hardy space ${H}^1$ and on Dirichlet spaces . Rev. Mat. Complut. 32(2019), no. 3, 799822.CrossRefGoogle Scholar
Girela, D. and Peláez, J., Carleson measures, multipliers and integration operators for spaces of Dirichlet type . J. Funct. Anal. 241(2006), no. 1, 334358.CrossRefGoogle Scholar
Karaev, M. T. and Mustafayev, H. S., On some properties of Deddens algebras . Rocky Mountain J. Math. 33(2003), no. 3, 915926.CrossRefGoogle Scholar
Lacruz, M., Invariant subspaces and Deddens algebras . Expo. Math. 33(2015), no. 1, 116120.CrossRefGoogle Scholar
Lin, Q., Volterra type operators between Bloch type spaces and weighted Banach spaces . Integr. Equ. Oper. Theory 91(2019), no. 13, 20 pp.CrossRefGoogle Scholar
Lin, Q., Liu, J., and Wu, Y., Volterra type operators on ${S}_p(D)$ spaces . J. Math. Anal. Appl. 461(2018), no. 2, 11001114.CrossRefGoogle Scholar
Lin, Q., Liu, J., and Wu, Y., Strict singularity of Volterra type operators on hardy spaces . J. Math. Anal. Appl. 492(2020), no. 1, 9 pp.10.1016/j.jmaa.2020.124438CrossRefGoogle Scholar
Liu, J., Lou, Z., and Xiong, C., Essential norms of integral operators on spaces of analytic functions . Nonlinear Anal. 75(2012), no. 13, 51455156.CrossRefGoogle Scholar
Liu, J., Lou, Z., and Zhu, K., Embedding of Möbius invariant function spaces into tent spaces . J. Geom. Anal. 27(2017), no. 2, 10131028.CrossRefGoogle Scholar
Liu, X., Liu, Y., Xia, L., and Yu, Y., The essential norm of the integral type operators . Banach J. Math. Anal. 14(2020), no. 1, 181202.CrossRefGoogle Scholar
Malman, B., Spectra of generalized Cesro operators acting on growth spaces . Integr. Equ. Oper. Theory 90(2018), no. 3, Article no. 26, 19 pp.10.1007/s00020-018-2448-4CrossRefGoogle Scholar
Mashreghi, J., The rate of increase of mean values of functions in hardy spaces . J. Aust. Math. Soc. 86(2009), no. 2, 199204.CrossRefGoogle Scholar
Mengestie, T., On the spectrum of Volterra-type integral operators on Fock–Sobolev spaces . Complex Anal. Oper. Theory 11(2017), no. 6, 14511461.CrossRefGoogle Scholar
Mengestie, T., Spectral properties of Volterra-type integral operators on Fock–Sobolev spaces . J. Korean Math. Soc. 54(2017), no. 6, 18011816.Google Scholar
Miihkinen, S., Pau, J., Perälä, A., and Wang, M., Volterra type integration operators from Bergman spaces to Hardy spaces . J. Funct. Anal. 279(2020), no. 4, 32 pp.CrossRefGoogle Scholar
Mitsis, T. and Papadimitrakis, M., The essential norm of a composition operator on the minimal Möbius invariant space . Ann. Acad. Sci. Fenn. Math. 37(2012), no. 1, 203214.10.5186/aasfm.2012.3714CrossRefGoogle Scholar
Ohno, S. and Pavlović, M., Weighted composition operators on the minimal Möbius invariant space . Bull. Korean Math. Soc. 51(2014), no. 4, 11871193.CrossRefGoogle Scholar
Petrovic, S., On the extended eigenvalues of some Volterra operators . Integr. Equ. Oper. Theory 57(2007), no. 4, 593598.CrossRefGoogle Scholar
Petrovic, S., Deddens algebras and shift . Complex Anal. Oper. Theory 5(2011), no. 1, 253259.CrossRefGoogle Scholar
Petrovic, S., Spectral radius algebras, Deddens algebras, and weighted shifts . Bull. Lond. Math. Soc. 43(2011), no. 3, 513522.CrossRefGoogle Scholar
Petrovic, S. and Sievewright, D., Compact composition operators and Deddens algebras . Complex Anal. Oper. Theory 12(2018), no. 8, 18891901.10.1007/s11785-017-0689-xCrossRefGoogle Scholar
Pommerenke, C., Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer, Berlin, 1992.CrossRefGoogle Scholar
Rättyä, J., n-th derivative characterisations, mean growth of derivatives and $F\left(p,q,s\right)$ . Bull. Aust. Math. Soc. 68(2003), no. 3, 405421.10.1017/S0004972700037813CrossRefGoogle Scholar
Rudin, W., Functional analysis. 2nd ed. International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1991.Google Scholar
Shargorodsky, E., On the essential norms of Toeplitz operators with continuous symbols . J. Funct. Anal. 280(2021), no. 2, 108835.CrossRefGoogle Scholar
Sievewright, D., Deddens algebras for weighted shifts . Houst. J. Math. 41(2015), no. 3, 785814.Google Scholar
Todorov, I., Bimodules over nest algebras and Deddens’ theorem . Proc. Amer. Math. Soc. 127(1999), no. 6, 17711780.CrossRefGoogle Scholar
Vukotić, D., The isoperimetric inequality and a theorem of Hardy and Littlewood . Amer. Math. Monthly 110(2003), no. 6, 532536.CrossRefGoogle Scholar
Wulan, H. and Xiong, C., Composition operators on the minimal Möbius invariant space, Hilbert spaces of analytic functions, American Mathematical Society, Providence, RI, 2010.Google Scholar
Xiao, J. and Zhu, K., Volume integral means of holomorphic functions . Proc. Amer. Math. Soc. 139(2011), no. 4, 14551465.CrossRefGoogle Scholar
Zhao, R., On a general family of function spaces . Ann. Acad. Sci. Fenn. Math. Diss. (1996), no. 105, 56 pp.Google Scholar
Zhu, K., A class of Möbius invariant function spaces . Ill. J. Math. 51(2007), no. 3, 9771002.Google Scholar