Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T15:29:24.184Z Has data issue: false hasContentIssue false

A METHOD TO SUPPORT THE IMPROVEMENT OF KNOWLEDGE TRANSFERS IN PRODUCT AND PRODUCTION ENGINEERING

Published online by Cambridge University Press:  19 June 2023

Albert Albers*
Affiliation:
Karlsruhe Institute of Technology (KIT)
Monika Klippert
Affiliation:
Karlsruhe Institute of Technology (KIT)
Moritz von Klitzing
Affiliation:
Karlsruhe Institute of Technology (KIT)
Simon Rapp
Affiliation:
Karlsruhe Institute of Technology (KIT)
*
Klippert, Monika, Karlsruhe Institute of Technology (KIT), Germany, monika.klippert@kit.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The product engineering process as part of the product life cycle includes product and production system development as well as production. In integrated product and production engineering (PPE), knowledge transfer is an important success factor. Optimizing the efficiency and effectiveness of knowledge transfers can, for example, support the avoidance of costly, production-related changes to the product design. The current state of research describes different models of knowledge transfer as well as factors that influence it. Some results show how the speed and quality of knowledge transfer can be improved by implementing so-called interventions. However, those models either represent abstract contexts of knowledge transfer or focus only on product engineering. Therefore, a literature analysis is conducted to identify the system of objectives for a method, that supports the improvement of knowledge transfer in PPE. Subsequently, the system of objectives is operationalized to provide the basis for the InKTI – Interdepartmental Knowledge Transfer Improvement Method, which is applicable, supports the user in improving knowledge transfers in PPE, and aims to increase the quality and speed of knowledge transfers.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Albers, A. and Gausemeier, J. (2012), „Von der fachdisziplinorientierten Produktentwicklung zur Vorausschauenden und Systemorientierten Produktentstehung”, In Anderl, R., Eigner, M., Sendler, U. und Stark, R., Smart Engineering. Interdisziplinäre Produktentstehung. acatech Diskussion. Springer Vieweg. BerlinGoogle Scholar
Albers, A., Gronau, N., Rapp, S., Grum, M., et al. (2018), “Influencing factors and methods for knowledge transfer situations in Product Generation Engineering based on the SECI model”, DS 91: Proceedings of NordDesign 2018, Linköping, Sweden, 14th-17th August 2018.Google Scholar
Albers, A., Lanza, G., Klippert, M., Schäfer, L., et al. (2022), “Product-Production-CoDesign: An Approach on Integrated Product and Production Engineering Across Generations and Life Cycles”, 32nd CRIP Design Conference.CrossRefGoogle Scholar
Albers, A., Rapp, S., Grum, M. (2019), “Knowledge Transfer Velocity Model Implementation – An Empirical Study In Product Development Contexts”, Published in: Gronau, N. and Grum, M. Knowledge Transfer Speed Optimizations in Product Development Contexts: Results of a Research Project. GITO mbH Verlag.Google Scholar
Albers, A., Reiss, N., Bursac, N. and Richter, T. (2016), “iPeM–integrated product engineering model in context of product generation engineering”, Procedia CIRP, 50, 100105.CrossRefGoogle Scholar
Badke-Schaub, P., Daalhuizen, J. and Roozenburg, N. (2011), “Towards a Designer-Centred Methodology: Descriptive Considerations and Prescriptive Reflections”, In H. Birkhofer (Ed.), The Future of Design Methodology. Springer London. pp. 181197. https://doi.org/10.1007/978-0-85729-615-3_16CrossRefGoogle Scholar
Beckmann, G. (2021), „Unterstützung des Methodentransfers durch eine visuelle Methoden- und Prozessbeschreibung”, Springer Berlin Heidelberg.CrossRefGoogle Scholar
Blessing, L. T.M. and Chakrabarti, A. (2009), “DRM, a Design Research Methodology”, Springer. London.CrossRefGoogle Scholar
Chen, J., Sun, P.Y.T. and McQueen, R.J. (2010), “The impact of national cultures on structured knowledge transfer”, Journal of Knowledge Management, Vol. 14 No. 2, pp. 228242.CrossRefGoogle Scholar
Cummings, J. and Teng, B.-S. (2003). “Transferring R&D knowledge: the key factors affecting knowledge transfer success”, Journal of Engineering and Technology Management. volume 20, Journal 1-2. pp. 3968.Google Scholar
Davenport, T. H., De Long, D. W. and Beers, M. C. (1998), “Successful knowledge management projects”, MIT Sloan management review, 39(2), 43.Google Scholar
Dvir, D., Raz, T. and Shenhar, A. J. (2003), “An empirical analysis of the relationship between project planning and project success”, International journal of project management 21.2: 8995.CrossRefGoogle Scholar
Ehrlenspiel, K. and Meerkamm, H. (2017), „Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit”, München Wien.CrossRefGoogle Scholar
Geis, C., et al. (2008), “Methods in practice – a study on requirements for development and transfer of design methods”, DS 48: Proceedings DESIGN 2008, the 10th International Design Conference, Dubrovnik, Croatia.Google Scholar
Grabowski, H., and Geiger, K.. (1997), “Neue Wege zur Produktentwicklung”, Raabe, StuttgartGoogle Scholar
Gronau, N. and Grum, M. (2019), “Knowledge Transfer Speed Optimizations in Product Development Contexts, chapter Towards a prediction of time consumption during knowledge transfer”, Empirical Studies of Business Informatics, GITO, pp. 2569.Google Scholar
Grote, M., Williams, I. and Preston, J. (2014), “Direct carbon dioxide emissions from civil aircraft”, Atmospheric Environment 95 (2014): 214224.CrossRefGoogle ScholarPubMed
Grum, M., Klippert, M., Albers, A., Gronau, N. and Thim, C. (2021a), “Examining the quality of knowledge transfers – the draft of an empirical research”, Proceedings of the Design Society, 1, 14311440.CrossRefGoogle Scholar
Grum, M., Rapp, S., Gronau, N. and Albers, A. (2019), “Knowledge Transfer Speed Optimization – The Speed Enhancement of Knowledge Transfers in Business Processes Shown in Product Generation Engineering Context”, Published in: Gronau, N. and Grum, M. Knowledge Transfer Speed Optimizations in Product Development Contexts: Results of a Research Project. GITO mbH Verlag.Google Scholar
Grum, M., Thim, C. and Gronau, N. (2021b), “Aiming for Knowledge-Transfer-Optimizing Intelligent Cyber-Physical Systems”, Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems. Springer, Cham, 2021. 149157.Google Scholar
Jänsch, J. (2007), “Akzeptanz und Anwendung von Konstruktionsmethoden im industriellen Einsatz: Analyse und Empfehlungen aus kognitionswissenschaftlicher Sicht”, VDI Verlag.Google Scholar
Klippert, M., Ebert, A.-K., Tworek, A., Rapp, S. and Albers, A. (2023a), “Systematic Evaluation of Knowledge Transfers in Product and Production Engineering”, In ISPIM Conference Proceedings. The International Society for Professional Innovation Management (ISPIM).Google Scholar
Klippert, M., Preißner, A., Rust, H. and Albers, A. (2022), “Analysis of Factors Influencing Knowledge Transfer between the Product and Production System Development as well as Production”, Procedia CIRP, 109, 340348.CrossRefGoogle Scholar
Klippert, M., Schäfer, L., Böllhoff, J., Willerscheid, H., Rapp, S. and Albers, A. (2023b), “Improving Knowledge Transfers at Protektorwerk Florenz Maisch GmbH & Co. KG through the Application of the InKTI – Interdepartmental Knowledge Transfer Improvement Method”, Proceedings of the Design Society.CrossRefGoogle Scholar
Klippert, M., Stolpmann, R. and Albers, A. (2023c), “Knowledge Transfer Quality Model Implementation – An Empirical Study in Product Engineering Contexts”, Procedia CIRP.CrossRefGoogle Scholar
Klippert, M., Stolpmann, R., Grum, M., Thim, C., Gronau, N. and Albers, A. (2023d), “Knowledge Transfer Quality Improvement – The Quality Enhancement of Knowledge Transfers in Product Engineering”, Procedia CIRP.CrossRefGoogle Scholar
Laukemann, A., Binz, H., and Roth, D.. (2016), “Approach of partially automated modelling of a process model”, DS 84: Proceedings of the DESIGN 2016 14th International Design Conference.Google Scholar
McMahon, C., Lowe, A., Culley, S. (2004), “Knowledge management in engineering design: personalization and codification”, Journal of Engineering Design, 15:4, 307325CrossRefGoogle Scholar
Liyanage, C., Ballal, T., Elhag, T. and Li, Q. (2009), “Knowledge communication and translation- A knowledge transfer model”, Journal of Knowledge Management, 13 (3). pp. 118131.CrossRefGoogle Scholar
Nonaka, I. and Takeuchi, H. (1995), “The knowledge-creating company: How Japanese companies create the dynamics of innovation”, Oxford university press.CrossRefGoogle Scholar
North, K. (2016), „Wissensorientierte Unternehmensführung. Wissensmanagement gestalten”, Wiesbaden: Springer Gabler.CrossRefGoogle Scholar
Pawlowsky, P. (2017), „Wissensmanagement”. Berlin: De Gruyter OldenbourgGoogle Scholar
Putnik, G. and Putnik, Z. (2019), “Defining Sequential Engineering (SeqE), Simultaneous engineering (SE), Concurrent Engineering (CE) and Collaborative Engineering (ColE): On similarities and differences”, Procedia CIRP. 84, pp. 6875.CrossRefGoogle Scholar
Reinicke, T. (2004), “Potentials and limitations of user integration in product development (Möglichkeiten und Grenzen der Nutzerintegration in der Produktentwicklung)”, dissertation, Fakultät V Verkehrs- und Maschinensysteme der Technischen Universität Berlin.Google Scholar
Schmidt, D. M. et al. (2016), “Modeling Transfer of Knowledge in an Online Platform of a Cluster”, Procedia CIRP 50 (2016): 348353.CrossRefGoogle Scholar
Shen, H., Li, Z. and Yang, X. (2015), “Processes, characteristics, and effectiveness: An integrative framework for successful knowledge transfer within organizations”, Journal of Organizational Change Management.CrossRefGoogle Scholar
Spath, D. and Dangelmaier, M. (2016), „Produktentwicklung Quo Vadis”, Handbuch Produktentwicklung: 37.CrossRefGoogle Scholar
Vajna, S., Bley, H., Hehenberg, P., Weber, C., Zeman, K. (2009), „CAx für Ingenieure Eine praxisbezogene Einführung”, Berlin, Heidelberg: Springer-Vieweg.Google Scholar
VDI - The Association of German Engineers (2019), “VDI 2221 - Part 1. Design of technical products and systems - Model of product design”, Berlin: Beuth-Verlag.Google Scholar