Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T22:01:20.217Z Has data issue: false hasContentIssue false

Polygenic liability, stressful life events and risk for secondary-treated depression in early life: a nationwide register-based case-cohort study

Published online by Cambridge University Press:  05 May 2021

Katherine L. Musliner*
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark National Center for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark
Klaus K. Andersen
Affiliation:
Unit for Statistics and Pharmacoepidemiology (SPE), Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
Esben Agerbo
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark National Center for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark The Center for Integrated Register-based Research at Aarhus University (CIRRAU), Aarhus, Denmark
Clara Albiñana
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark National Center for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark
Bjarni J. Vilhjalmsson
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark National Center for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark Bioinformatics Research Centre (BiRC), Aarhus University, Aarhus, Denmark
Veera M. Rajagopal
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Department of Biomedicine, Aarhus University, Aarhus, Denmark Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark
Jonas Bybjerg-Grauholm
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
Marie Bækved-Hansen
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
Carsten B. Pedersen
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark National Center for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark The Center for Integrated Register-based Research at Aarhus University (CIRRAU), Aarhus, Denmark
Marianne G. Pedersen
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark National Center for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark The Center for Integrated Register-based Research at Aarhus University (CIRRAU), Aarhus, Denmark
Trine Munk-Olsen
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark National Center for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark
Michael E. Benros
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
Thomas D. Als
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Department of Biomedicine, Aarhus University, Aarhus, Denmark
Jakob Grove
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Bioinformatics Research Centre (BiRC), Aarhus University, Aarhus, Denmark Department of Biomedicine, Aarhus University, Aarhus, Denmark Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark
Thomas Werge
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Institute of Biological Psychiatry, Copenhagen Mental Health Services, Copenhagen, Denmark
Anders D. Børglum
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Department of Biomedicine, Aarhus University, Aarhus, Denmark Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
David M. Hougaard
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
Ole Mors
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
Merete Nordentoft
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
Preben B. Mortensen
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark National Center for Register-based Research, Department of Economics, Aarhus University, Aarhus, Denmark The Center for Integrated Register-based Research at Aarhus University (CIRRAU), Aarhus, Denmark
Nis P. Suppli
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
*
Author for correspondence: Katherine L. Musliner, E-mail: klm@econ.au.dk

Abstract

Background

In this study, we examined the relationship between polygenic liability for depression and number of stressful life events (SLEs) as risk factors for early-onset depression treated in inpatient, outpatient or emergency room settings at psychiatric hospitals in Denmark.

Methods

Data were drawn from the iPSYCH2012 case-cohort sample, a population-based sample of individuals born in Denmark between 1981 and 2005. The sample included 18 532 individuals who were diagnosed with depression by a psychiatrist by age 31 years, and a comparison group of 20 184 individuals. Information on SLEs was obtained from nationwide registers and operationalized as a time-varying count variable. Hazard ratios and cumulative incidence rates were estimated using Cox regressions.

Results

Risk for depression increased by 35% with each standard deviation increase in polygenic liability (p < 0.0001), and 36% (p < 0.0001) with each additional SLE. There was a small interaction between polygenic liability and SLEs (β = −0.04, p = 0.0009). The probability of being diagnosed with depression in a hospital-based setting between ages 15 and 31 years ranged from 1.5% among males in the lowest quartile of polygenic liability with 0 events by age 15, to 18.8% among females in the highest quartile of polygenic liability with 4+ events by age 15.

Conclusions

These findings suggest that although there is minimal interaction between polygenic liability and SLEs as risk factors for hospital-treated depression, combining information on these two important risk factors could potentially be useful for identifying high-risk individuals.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albiñana, C., Grove, J., McGrath, J. J., Agerbo, E., Wray, N. R., Werge, T., … Vilhjálmsson, B. J. (2020). Leveraging both individual-level genetic data and GWAS summary statistics increases polygenic prediction. Biorxiv, 2020.2011.2027.401141. doi: 10.1101/2020.11.27.401141Google Scholar
Anda, R. F., Felitti, V. J., Bremner, J. D., Walker, J. D., Whitfield, C., Perry, B. D., … Giles, W. H. (2006). The enduring effects of abuse and related adverse experiences in childhood. A convergence of evidence from neurobiology and epidemiology. European Archives of Psychiatry and Clinical Neuroscience, 256(3), 174186. doi: 10.1007/s00406-005-0624-4CrossRefGoogle ScholarPubMed
Arnau-Soler, A., Adams, M. J., Clarke, T. K., MacIntyre, D. J., Milburn, K., Navrady, L., … Thomson, P. A. (2019). A validation of the diathesis-stress model for depression in Generation Scotland. Translational Psychiatry, 9(1), 25. doi: 10.1038/s41398-018-0356-7CrossRefGoogle ScholarPubMed
Genomes Project Consortium, Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., … Abecasis, G. R. (2015). A global reference for human genetic variation. Nature, 526(7571), 6874. doi: 10.1038/nature15393Google ScholarPubMed
Barlow, W. E. (1994). Robust variance estimation for the case-cohort design. Biometrics, 50(4), 10641072.CrossRefGoogle ScholarPubMed
Barlow, W. E., Ichikawa, L., Rosner, D., & Izumi, S. (1999). Analysis of case-cohort designs. Journal of Clinical Epidemiology, 52(12), 11651172.CrossRefGoogle ScholarPubMed
Charlson, M. E., Pompei, P., Ales, K. L., & MacKenzie, C. R. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. Journal of Chronic Disorders, 40(5), 373383.CrossRefGoogle ScholarPubMed
Coleman, J. R. I., Peyrot, W. J., Purves, K. L., Davis, K. A. S., Rayner, C., Choi, S. W., … Breen, G. (2020). Genome-wide gene-environment analyses of major depressive disorder and reported lifetime traumatic experiences in UK Biobank. Molecular Psychiatry, 25(7), 14301446. 10.1038/s41380-019-0546-6.CrossRefGoogle ScholarPubMed
Colman, I., Kingsbury, M., Garad, Y., Zeng, Y., Naicker, K., Patten, S., … Thompson, A. H. (2016). Consistency in adult reporting of adverse childhood experiences. Psychological Medicine, 46(3), 543549. doi: 10.1017/S0033291715002032CrossRefGoogle ScholarPubMed
Colodro-Conde, L., Couvy-Duchesne, B., Zhu, G., Coventry, W. L., Byrne, E. M., Gordon, S., … Martin, N. G. (2018). A direct test of the diathesis-stress model for depression. Molecular Psychiatry, 23(7), 15901596. doi: 10.1038/mp.2017.130CrossRefGoogle ScholarPubMed
Dahl, S. K., Larsen, J. T., Petersen, L., Ubbesen, M. B., Mortensen, P. B., Munk-Olsen, T., & Musliner, K. L. (2017). Early adversity and risk for moderate to severe unipolar depressive disorder in adolescence and adulthood: A register-based study of 978647 individuals. Journal of Affective Disorders, 214, 122129. doi: 10.1016/j.jad.2017.03.014Google Scholar
Delaneau, O., Coulonges, C., & Zagury, J. F. (2008). Shape-IT: New rapid and accurate algorithm for haplotype inference. BMC Bioinformatics, 9, 540. doi: 10.1186/1471-2105-9-540CrossRefGoogle ScholarPubMed
Fang, Y., Scott, L., Song, P., Burmeister, M., & Sen, S. (2020). Genomic prediction of depression risk and resilience under stress. Nature Human Behavior, 4(1), 111118. doi: 10.1038/s41562-019-0759-3CrossRefGoogle ScholarPubMed
Gray, R. J. (1992). Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. Journal of the American Statistical Association, 87(420), 942951.CrossRefGoogle Scholar
Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1, 293319. doi: 10.1146/annurev.clinpsy.1.102803.143938CrossRefGoogle ScholarPubMed
Hasin, D. S., Sarvet, A. L., Meyers, J. L., Saha, T. D., Ruan, W. J., Stohl, M., & Grant, B. F. (2018). Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry, 75(4), 336346. doi: 10.1001/jamapsychiatry.2017.4602CrossRefGoogle ScholarPubMed
Hollegaard, M. V., Grauholm, J., Borglum, A., Nyegaard, M., Norgaard-Pedersen, B., Orntoft, T., … Hougaard, D. M. (2009). Genome-wide scans using archived neonatal dried blood spot samples. BMC Genomics, 10, 297. doi: 10.1186/1471-2164-10-297CrossRefGoogle ScholarPubMed
Hollegaard, M. V., Grove, J., Grauholm, J., Kreiner-Moller, E., Bonnelykke, K., Norgaard, M., … Hougaard, D. M. (2011). Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source. BMC Genetics, 12, 58. doi: 10.1186/1471-2156-12-58CrossRefGoogle ScholarPubMed
Howard, D. M., Adams, M. J., Clarke, T. K., Hafferty, J. D., Gibson, J., Shirali, M., … McIntosh, A. M. (2019). Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nature Neuroscience, 22(3), 343352. 10.1038/s41593-018-0326-7.CrossRefGoogle ScholarPubMed
Howie, B. N., Donnelly, P., & Marchini, J. (2009). A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genetics, 5(6), e1000529. doi: 10.1371/journal.pgen.1000529CrossRefGoogle ScholarPubMed
Keller, M. C. (2014). Gene x environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biological Psychiatry, 75(1), 1824. doi: 10.1016/j.biopsych.2013.09.006CrossRefGoogle Scholar
Kendler, K. S., & Karkowski-Shuman, L. (1997). Stressful life events and genetic liability to major depression: Genetic control of exposure to the environment? Psychological Medicine, 27(3), 539547.CrossRefGoogle ScholarPubMed
Kessler, R. C. (1997). The effects of stressful life events on depression. Annual Review of Psychology, 48, 191214. doi: 10.1146/annurev.psych.48.1.191CrossRefGoogle ScholarPubMed
Knol, M. J., van der Tweel, I., Grobbee, D. E., Numans, M. E., & Geerlings, M. I. (2007). Estimating interaction on an additive scale between continuous determinants in a logistic regression model. International Journal of Epidemiology, 36(5), 11111118. doi: 10.1093/ije/dym157CrossRefGoogle Scholar
Lam, M., Awasthi, S., Watson, H. J., Goldstein, J., Panagiotaropoulou, G., Trubetskoy, V., … Ripke, S. (2019). RICOPILI: Rapid imputation for COnsortias PIpeLIne. Bioinformatics, 36(3), 930933. 10.1093/bioinformatics/btz633.CrossRefGoogle Scholar
Li, R., & Chambless, L. (2007). Test for additive interaction in proportional hazards models. Annals of Epidemiology, 17(3), 227236. doi: 10.1016/j.annepidem.2006.10.009CrossRefGoogle ScholarPubMed
Loh, P. R., Kichaev, G., Gazal, S., Schoech, A. P., & Price, A. L. (2018). Mixed-model association for biobank-scale datasets. Nature Genetics, 50(7), 906908. doi: 10.1038/s41588-018-0144-6CrossRefGoogle ScholarPubMed
Loh, P. R., Tucker, G., Bulik-Sullivan, B. K., Vilhjalmsson, B. J., Finucane, H. K., Salem, R. M., … Price, A. L. (2015). Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nature Genetics, 47(3), 284290. doi: 10.1038/ng.3190CrossRefGoogle ScholarPubMed
Lynge, E., Sandegaard, J. L., & Rebolj, M. (2011). The Danish national patient register. Scandinavian Journal of Public Health, 39(7 Suppl), 3033. doi: 10.1177/1403494811401482CrossRefGoogle ScholarPubMed
Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., & Daly, M. J. (2019). Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics, 51(4), 584591. doi: 10.1038/s41588-019-0379-xCrossRefGoogle ScholarPubMed
Middeldorp, C. M., Cath, D. C., Beem, A. L., Willemsen, G., & Boomsma, D. I. (2008). Life events, anxious depression and personality: A prospective and genetic study. Psychological Medicine, 38(11), 15571565. doi: 10.1017/S0033291708002985CrossRefGoogle ScholarPubMed
Monroe, S. M., & Simons, A. D. (1991). Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110(3), 406425.CrossRefGoogle ScholarPubMed
Mors, O., Perto, G. P., & Mortensen, P. B. (2011). The Danish psychiatric central research register. Scandinavian Journal of Public Health, 39(7 Suppl), 5457. doi: 10.1177/1403494810395825CrossRefGoogle ScholarPubMed
Mullins, N., Power, R. A., Fisher, H. L., Hanscombe, K. B., Euesden, J., Iniesta, R., … Lewis, C. M. (2016). Polygenic interactions with environmental adversity in the aetiology of major depressive disorder. Psychological Medicine, 46(4), 759770. doi: 10.1017/S0033291715002172CrossRefGoogle ScholarPubMed
Musliner, K. L., Krebs, M. D., Albinana, C., Vilhjalmsson, B., Agerbo, E., Zandi, P. P., … Ostergaard, S. D. (2020). Polygenic risk and progression to bipolar or psychotic disorders among individuals diagnosed with unipolar depression in early life. American Journal of Psychiatry, 177(10), 936943. doi: 10.1176/appi.ajp.2020.19111195CrossRefGoogle ScholarPubMed
Musliner, K. L., Liu, X., Gasse, C., Christensen, K. S., Wimberley, T., & Munk-Olsen, T. (2019). Incidence of medically treated depression in Denmark among individuals 15-44 years old: A comprehensive overview based on population registers. Acta Psychiatrica Scandinavica, 139(6), 548557. doi: 10.1111/acps.13028CrossRefGoogle Scholar
Musliner, K. L., Munk-Olsen, T., Mors, O., & Østergaard, S. D. (2017). Progression from unipolar depression to schizophrenia. Acta Psychiatrica Scandinavica, 135(1), 4250. doi: 10.1111/acps.12663CrossRefGoogle ScholarPubMed
Musliner, K. L., & Ostergaard, S. D. (2018). Patterns and predictors of conversion to bipolar disorder in 91 587 individuals diagnosed with unipolar depression. Acta Psychiatrica Scandinavica, 137(5), 422432. doi: 10.1111/acps.12869CrossRefGoogle ScholarPubMed
Musliner, K. L., Seifuddin, F., Judy, J. A., Pirooznia, M., Goes, F. S., & Zandi, P. P. (2015). Polygenic risk, stressful life events and depressive symptoms in older adults: A polygenic score analysis. Psychological Medicine, 45(8), 17091720. doi: 10.1017/S0033291714002839CrossRefGoogle ScholarPubMed
Norgaard-Pedersen, B., & Hougaard, D. M. (2007). Storage policies and use of the Danish Newborn Screening Biobank. Journal of Inherited Metabolic Disorders, 30(4), 530536. doi: 10.1007/s10545-007-0631-xCrossRefGoogle ScholarPubMed
Olfson, M., Kroenke, K., Wang, S., & Blanco, C. (2014). Trends in office-based mental health care provided by psychiatrists and primary care physicians. Journal of Clinical Psychiatry, 75(3), 247253. doi: 10.4088/JCP.13m08834CrossRefGoogle ScholarPubMed
Pedersen, C. B. (2011). The Danish civil registration system. Scandinavian Journal of Public Health, 39(7 Suppl), 2225. doi: 10.1177/1403494810387965CrossRefGoogle ScholarPubMed
Pedersen, C. B., Bybjerg-Grauholm, J., Pedersen, M. G., Grove, J., Agerbo, E., Baekvad-Hansen, M., … Mortensen, P. B. (2018). The iPSYCH2012 case-cohort sample: New directions for unravelling genetic and environmental architectures of severe mental disorders. Molecular Psychiatry, 23(1), 614. doi: 10.1038/mp.2017.196CrossRefGoogle ScholarPubMed
Pedersen, C. B., Mors, O., Bertelsen, A., Waltoft, B. L., Agerbo, E., McGrath, J. J., … Eaton, W. W. (2014). A comprehensive nationwide study of the incidence rate and lifetime risk for treated mental disorders. JAMA Psychiatry, 71(5), 573581. doi: 10.1001/jamapsychiatry.2014.16CrossRefGoogle ScholarPubMed
Perperoglou, A., Sauerbrei, W., Abrahamowicz, M., & Schmid, M. (2019). A review of spline function procedures in R. BMC Medical Research Methodology, 19(1), 46. doi: 10.1186/s12874-019-0666-3CrossRefGoogle ScholarPubMed
Petersen, L., Sorensen, T. I., & Andersen, P. K. (2003). Comparison of case-cohort estimators based on data on premature death of adult adoptees. Statistical Medicine, 22(24), 37953803. doi: 10.1002/sim.1672CrossRefGoogle ScholarPubMed
Peterson, R. E., Cai, N., Dahl, A. W., Bigdeli, T. B., Edwards, A. C., Webb, B. T., … Kendler, K. S. (2018). Molecular genetic analysis subdivided by adversity exposure suggests etiologic heterogeneity in major depression. American Journal of Psychiatry, 175(6), 545554. doi: 10.1176/appi.ajp.2017.17060621CrossRefGoogle ScholarPubMed
Petersson, F., Baadsgaard, M., & Thygesen, L. C. (2011). Danish registers on personal labour market affiliation. Scandinavian Journal of Public Health, 39(7 Suppl), 9598. doi: 10.1177/1403494811408483CrossRefGoogle ScholarPubMed
Peyrot, W. J., Milaneschi, Y., Abdellaoui, A., Sullivan, P. F., Hottenga, J. J., Boomsma, D. I., & Penninx, B. W. (2014). Effect of polygenic risk scores on depression in childhood trauma. British Journal of Psychiatry, 205(2), 113119. doi: 10.1192/bjp.bp.113.143081CrossRefGoogle ScholarPubMed
Peyrot, W. J., Van der Auwera, S., Milaneschi, Y., Dolan, C. V., Madden, P. A. F., Sullivan, P. F., … Penninx, B. (2018). Does childhood trauma moderate polygenic risk for depression? A meta-analysis of 5765 subjects from the psychiatric genomics consortium. Biological Psychiatry, 84(2), 138147. doi: 10.1016/j.biopsych.2017.09.009CrossRefGoogle ScholarPubMed
Prentice, R. L. (1986). A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika, 73(1), 111.CrossRefGoogle Scholar
Self, S. G., & Prentice, R. L. (1988). Asymptotic distribution theory and efficiency results for case-cohort studies. The Annals of Statistics, 16(1), 6481.CrossRefGoogle Scholar
Sullivan, P. F., Agrawal, A., Bulik, C. M., Andreassen, O. A., Borglum, A. D., Breen, G., … Consortium, P. G. (2018). Psychiatric genomics: An update and an agenda. American Journal of Psychiatry, 175(1), 1527. doi: 10.1176/appi.ajp.2017.17030283CrossRefGoogle Scholar
Thygesen, S. K., Christiansen, C. F., Christensen, S., Lash, T. L., & Sorensen, H. T. (2011). The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions in the population-based Danish national registry of patients. BMC Medical Research Methodology, 11, 83. doi: 10.1186/1471-2288-11-83CrossRefGoogle ScholarPubMed
Vilhjalmsson, B. J., Yang, J., Finucane, H. K., Gusev, A., Lindstrom, S., Ripke, S., … Price, A. L. (2015). Modeling linkage disequilibrium increases accuracy of polygenic risk scores. American Journal of Human Genetics, 97(4), 576592. doi: 10.1016/j.ajhg.2015.09.001CrossRefGoogle ScholarPubMed
Wang, P. S., Aguilar-Gaxiola, S., Alonso, J., Angermeyer, M. C., Borges, G., Bromet, E. J., … Wells, J. E. (2007). Use of mental health services for anxiety, mood, and substance disorders in 17 countries in the WHO world mental health surveys. Lancet (London, England), 370(9590), 841850. doi: 10.1016/S0140-6736(07)61414-7CrossRefGoogle ScholarPubMed
Weissman, M. M., Bland, R., Joyce, P. R., Newman, S., Wells, J. E., & Wittchen, H. U. (1993). Sex differences in rates of depression: Cross-national perspectives. Journal of Affective Disorders, 29(2–3), 7784.CrossRefGoogle ScholarPubMed
Weissman, M. M., Wickramaratne, P., Gameroff, M. J., Warner, V., Pilowsky, D., Kohad, R. G., … Talati, A. (2016). Offspring of depressed parents: 30 years later. American Journal of Psychiatry, 173(10), 10241032. doi: 10.1176/appi.ajp.2016.15101327CrossRefGoogle ScholarPubMed
Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui, A., … Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 50(5), 668681. doi: 10.1038/s41588-018-0090-3CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Musliner et al. supplementary material

Musliner et al. supplementary material 1

Download Musliner et al. supplementary material(PDF)
PDF 80.7 KB
Supplementary material: PDF

Musliner et al. supplementary material

Musliner et al. supplementary material 2

Download Musliner et al. supplementary material(PDF)
PDF 372 KB