Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:23:11.476Z Has data issue: false hasContentIssue false

Quenched and annealed equilibrium states for random Ruelle expanding maps and applications

Published online by Cambridge University Press:  09 September 2022

MANUEL STADLBAUER*
Affiliation:
Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
PAULO VARANDAS
Affiliation:
CMUP, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal Departamento de Matemática, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil (e-mail: paulo.varandas@ufba.br)
XUAN ZHANG
Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil (e-mail: xuan@ime.usp.br)

Abstract

We find generalized conformal measures and equilibrium states for random dynamics generated by Ruelle expanding maps, under which the dynamics exhibits exponential decay of correlations. This extends results by Baladi [Correlation spectrum of quenched and annealed equilibrium states for random expanding maps. Comm. Math. Phys. 186 (1997), 671–700] and Carvalho et al [Semigroup actions of expanding maps. J. Stat. Phys. 116(1) (2017), 114–136], where the randomness is driven by an independent and identically distributed process and the phase space is assumed to be compact. We give applications in the context of weighted non-autonomous iterated function systems, free semigroup actions and introduce a boundary of equilibria for not necessarily free semigroup actions.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atnip, J., Froyland, G., González-Tokman, C. and Vaienti, S.. Thermodynamic formalism for random weighted covering systems. Comm. Math. Phys. 386 (2021), 819902.10.1007/s00220-021-04156-1CrossRefGoogle Scholar
Baladi, V.. Correlation spectrum of quenched and annealed equilibrium states for random expanding maps. Comm. Math. Phys. 186 (1997), 671700.CrossRefGoogle Scholar
Bessa, M. and Stadlbauer, M.. On the Lyapunov spectrum of relative transfer operators. Stoch. Dyn. 16(6) (2016), 1650024.CrossRefGoogle Scholar
Bogenschütz, T. and Gundlach, V. M.. Ruelle’s transfer operator for random subshifts of finite type. Ergod. Th. & Dynam. Sys. 15 (1995), 413447.10.1017/S0143385700008464CrossRefGoogle Scholar
Bressaud, X., Fernández, R. and Galves, A.. Decay of correlations for non-Hölderian dynamics. A coupling approach. Electron. J. Probab. 4(3) (1999), 19 pp (electronic).10.1214/EJP.v4-40CrossRefGoogle Scholar
Carvalho, M., Rodrigues, F. and Varandas, P.. Semigroup actions of expanding maps. J. Stat. Phys. 116(1) (2017), 114136.CrossRefGoogle Scholar
Carvalho, M., Rodrigues, F. and Varandas, P.. A variational principle for free semigroup actions. Adv. Math. 334 (2018), 450487.10.1016/j.aim.2018.06.010CrossRefGoogle Scholar
Castro, A., Rodrigues, F. and Varandas, P.. Stability and limit theorems for sequences of uniformly hyperbolic dynamics. J. Math. Anal. Appl. 480 (2019), 123426.10.1016/j.jmaa.2019.123426CrossRefGoogle Scholar
Conze, J. P. and Raugi, A.. Limit theorems for sequential expanding dynamical systems on $\left[0,1\right]$ . Ergodic Theory and Related Fields (Contemporary Mathematics, 430). Ed. I. Assani. American Mathematical Society, Providence, RI, 2007, pp. 89121.CrossRefGoogle Scholar
Cuny, C. and Merlevède, F.. Strong invariance principles with rate for ‘reverse’ martingale differences and applications. J. Theoret. Probab. 28(1) (2015), 137183.CrossRefGoogle Scholar
Denker, M. and Gordin, M.. Gibbs measures for fibred systems. Adv. Math. 148(2) (1999), 161192.CrossRefGoogle Scholar
Denker, M., Gordin, M. and Heinemann, S.-M.. On the relative variational principle for fibre expanding maps. Ergod. Th. & Dynam. Sys. 22(3) (2002), 757782.CrossRefGoogle Scholar
Dragičević, D., Froyland, G., González-Tokman, C. and Vaienti, S. Almost sure invariance principle for random piecewise expanding maps. Nonlinearity 31(5) (2018), 22522280.CrossRefGoogle Scholar
Dragičević, D. and Hafouta, Y.. Almost sure invariance principle for random dynamical systems via Gouëzel’s approach. Nonlinearity 34(10) (2021), 67736798.CrossRefGoogle Scholar
Fisher, A. M.. Small-scale structure via flows. Fractal Geometry and Stochastics III. Eds. Bandt, C., Mosco, U. and Zähle, M.. Birkhäuser Basel, Basel, 2004, pp. 5978.CrossRefGoogle Scholar
Hafouta, Y.. A vector valued almost sure invariance principle for time dependent non-uniformly expanding dynamical systems. Preprint, 2020, arXiv:1910.12792.Google Scholar
Hairer, M. and Mattingly, J. C.. Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations. Ann. Probab. 36(6) (2008), 20502091.10.1214/08-AOP392CrossRefGoogle Scholar
Haydn, N., Nicol, M., Török, A. and Vaienti, S.. Almost sure invariance principle for sequential and non-stationary dynamical systems. Trans. Amer. Math. Soc. 369 (2017), 52935316.CrossRefGoogle Scholar
Heinrich, L.. Mixing properties and central limit theorem for a class of non-identical piecewise monotonic ${C}^2$ —Transformations. Math. Nachr. 181 (1996), 185214.10.1002/mana.3211810107CrossRefGoogle Scholar
Jaerisch, J. and Sumi, H.. Dynamics of infinitely generated nicely expanding rational semigroups and the inducing method. Trans. Amer. Math. Soc. 369(9) (2017), 61476187.CrossRefGoogle Scholar
Kifer, Y.. Perron–Frobenius theorem, large deviations, and random perturbations in random environments. Math. Z. 222(4) (1996), 677698.CrossRefGoogle Scholar
Kifer, Y.. Limit theorems for random transformations and processes in random environments. Trans. Amer. Math. Soc. 350(4) (1998), 14811518.CrossRefGoogle Scholar
Kloeckner, B. R., Lopes, A. O. and Stadlbauer, M.. Contraction in the Wasserstein metric for some Markov chains, and applications to the dynamics of expanding maps. Nonlinearity 28(11) (2015), 41174137.10.1088/0951-7715/28/11/4117CrossRefGoogle Scholar
Mauldin, R. D. and Urbański, M.. Dimensions and measures in infinite iterated function systems. Proc. Lond. Math. Soc. (3) 73(1) (1996), 105154.CrossRefGoogle Scholar
Mauldin, R. D. and Urbański, M.. Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets (Cambridge Tracts in Mathematics, 148). Cambridge University Press, Cambridge, 2003.CrossRefGoogle Scholar
Mayer, V., Skorulski, B. and Urbański, M.. Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and fractal Geometry (Lecture Notes in Mathematics, 2036). Springer, Heidelberg, 2011.CrossRefGoogle Scholar
Rempe-Gillen, L. and Urbański, M.. Non-autonomous conformal iterated function systems and Moran-set constructions. Trans. Amer. Math. Soc. 368(3) (2016), 19792017.CrossRefGoogle Scholar
Ruelle, D.. The thermodynamic formalism for expanding maps. Comm. Math. Phys. 125(2) (1989), 239262.CrossRefGoogle Scholar
Ruelle, D.. Thermodynamic Formalism (Cambridge Mathematical Library), 2nd edn. Cambridge University Press, Cambridge, 2004.10.1017/CBO9780511617546CrossRefGoogle Scholar
Sarig, O. M.. Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc. 131(6) (2003), 17511758.CrossRefGoogle Scholar
Stadlbauer, M.. Coupling methods for random topological Markov chains. Ergod. Th. & Dynam. Sys. 37(3) (2017), 971994.10.1017/etds.2015.61CrossRefGoogle Scholar
Stadlbauer, M. and Zhang, X.. On the law of the iterated logarithm for continued fractions with sequentially restricted partial quotients. Nonlinearity 34 (2021), 13891407.CrossRefGoogle Scholar
Sumi, H. and Urbanski, M.. The equilibrium states for semigroups of rational maps. Monatsh. Math. 156(4) (2009), 371390.CrossRefGoogle Scholar
Sumi, H. and Urbanski, M.. Transversality family of expanding rational semigroups. Adv. Math. 234 (2013), 697734.CrossRefGoogle Scholar
Viana, M. and Oliveira, K.. Foundations of Ergodic Theory. Cambridge University Press, Cambridge, 2016.Google Scholar
Wu, W. B. and Zhao, Z.. Moderate deviations for stationary processes. Statist. Sinica 18(2) (2008), 769782.Google Scholar