Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T22:26:11.608Z Has data issue: false hasContentIssue false

A distributionally ambiguous two-stage stochastic approach for investment in renewable generation

Published online by Cambridge University Press:  12 May 2022

PEDRO BORGES
Affiliation:
Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil emails: pborges@impa.br; solodov@impa.br
CLAUDIA SAGASTIZÁBAL
Affiliation:
IMECC/UNICAMP, Campinas, São Paulo, Brazil email: sagastiz@unicamp.br
MIKHAIL SOLODOV
Affiliation:
Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil emails: pborges@impa.br; solodov@impa.br
ASGEIR TOMASGARD
Affiliation:
Norwegian University of Science and Technology, Trondheim, Trondelag, Norway email: asgeir.tomasgard@ntnu.no

Abstract

The optimal expansion of a power system with reduced carbon footprint entails dealing with uncertainty about the distribution of the random variables involved in the decision process. Optimisation under ambiguity sets provides a mechanism to suitably deal with such a setting. For two-stage stochastic linear programs, we propose a new model that is between the optimistic and pessimistic paradigms in distributionally robust stochastic optimisation. When using Wasserstein balls as ambiguity sets, the resulting optimisation problem has nonsmooth convex constraints depending on the number of scenarios and a bilinear objective function. We propose a decomposition method along scenarios that converges to a solution, provided a global optimisation solver for bilinear programs with polyhedral feasible sets is available. The solution procedure is applied to a case study on expansion of energy generation that takes into account sustainability goals for 2050 in Europe, under uncertain future market conditions.

Type
Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayraksan, G. & Love, D. K. (2015) Data-driven stochastic programming using Phi-divergences. In: The Operations Research Revolution, INFORMS, pp. 119. https://doi.org/10.1287%2Feduc.2015.0134 Google Scholar
Ben-Tal, A., Ghaoui, L. E. & Nemirovski, A. (2009) Robust Optimization, Princeton University Press, Princeton, NJ.10.1515/9781400831050CrossRefGoogle Scholar
Ben-Tal, A. & Teboulle, M. (1987) Penalty functions and duality in stochastic programming via $\phi$ -divergence functionals. Math. Oper. Res. 12(2), 224240.CrossRefGoogle Scholar
Bertsimas, D., Doan, X. V., Natarajan, K. & Teo, C.-P. (2010) Models for minimax stochastic linear optimization problems with risk aversion. Math. Oper. Res. 35(3), 580602.10.1287/moor.1100.0445CrossRefGoogle Scholar
Birge, J. R. & Louveaux, F. (1997). Introduction to Stochastic Programming, Springer-Verlag, Berlin/Heidelberg, Germany.Google Scholar
Calafiore, G. C. (2007) Ambiguous risk measures and optimal robust portfolios. SIAM J. Optim. 18(3), 853877.CrossRefGoogle Scholar
Delage, E. & Ye, Y. (2010) Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595612.CrossRefGoogle Scholar
Dempe, S., Dutta, J. & Mordukhovich, B. S. (2007) New necessary optimality conditions in optimistic bilevel programming. Optimization 56(5–6), 577604.CrossRefGoogle Scholar
Esfahani, P. M. & Kuhn, D. (2017) Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Math. Program. 171(1–2), 115166.CrossRefGoogle Scholar
Fàbián, C. I. & Szöke, Z. (2006) Solving two-stage stochastic programming problems with level decomposition. Comput. Manag. Sci. 4(4), 313353.CrossRefGoogle Scholar
Goel, V. & Grossmann, I. E. (2004) A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves. Comput. Chemical Eng. 28(8), 14091429.CrossRefGoogle Scholar
Goh, J. & Sim, M. (2010) Distributionally robust optimization and its tractable approximations. Oper. Res. 58(4-part-1), 902917.10.1287/opre.1090.0795CrossRefGoogle Scholar
del Granado, P., Skar, C., Doukas, H. & Trachanas, G. P. (2018) Investments in the EU power system: A stress test analysis on the effectiveness of decarbonisation policies. In: Understanding Risks and Uncertainties in Energy and Climate Policy, Springer International Publishing, New York, pp. 97122. https://doi.org/10.1007%2F978-3-030-03152-7_4 Google Scholar
Hanasusanto, G. A. & Kuhn, D. (2018) Conic programming reformulations of two-stage distributionally robust linear programs over Wasserstein balls. Oper. Res. 66(3), 849869.10.1287/opre.2017.1698CrossRefGoogle Scholar
Hellemo, L., Barton, P. I. & Tomasgard, A. (2018) Decision-dependent probabilities in stochastic programs with recourse. Comput. Manag. Sci. 15(3–4), 369395.CrossRefGoogle Scholar
Jonsbråten, T. W., Wets, R. & Woodruff, D. L. (1998) A class of stochastic programs with decision dependent random elements. Ann. Oper. Res. 82, 83106.CrossRefGoogle Scholar
Kuhn, D., Esfahani, P. M., Nguyen, V. A. & Shafieezadeh-Abadeh, S. (2019). Wasserstein distributionally robust optimization: theory and applications in machine learning. In: Operations Research & Management Science in the Age of Analytics, INFORMS, pp. 130166. https://doi.org/10.1287%2Feduc.2019.0198 CrossRefGoogle Scholar
Love, D. & Bayraksan, G. (2013) Two-stage likelihood robust linear program with application to water allocation under uncertainty. In: 2013 Winter Simulations Conference (WSC), IEEE, Hoboken, NJ. https://doi.org/10.1109%2Fwsc.2013.6721409 CrossRefGoogle Scholar
Lubin, M. & Dunning, I. (2015) Computing in operations research using Julia. INFORMS J. Comput. 27(2), 238248.10.1287/ijoc.2014.0623CrossRefGoogle Scholar
Luna, J. P., SagastizÁbal, C. & Silva, P. J. S. (2021) A discussion on electricity prices, or the two sides of the coin. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379(2202), 0428.Google Scholar
Nohadani, O. & Sharma, K. (2018) Optimization under decision-dependent uncertainty. SIAM J. Optim. 28(2), 17731795.CrossRefGoogle Scholar
Noyan, N., Rudolf, G. & Lejeune, M. (2018) Distributionally Robust Optimization with Decision-Dependent Ambiguity Set. Tech. rep. Optimization Online.Google Scholar
Oliveira, W., SagastizÁbal, C. & Scheimberg, S. (2011) Inexact bundle methods for two-stage stochastic programming. SIAM J. Optim. 21(2), 517544.CrossRefGoogle Scholar
Pflüg, G. & Wozabal, D. (2007) Ambiguity in portfolio selection. Vol. 7, 4. Informa UK Limited, pp. 435442.10.1080/14697680701455410CrossRefGoogle Scholar
Pflüg, G. C., Pichler, A. & Wozabal, D. (2012) The 1/N investment strategy is optimal under high model ambiguity. J. Banking Finance 36(2), 410417.CrossRefGoogle Scholar
Postek, K., den Hertog, D. & Melenberg, B. (2016) Computationally tractable counterparts of distributionally robust constraints on risk measures. SIAM Rev. 58(4), 603650.10.1137/151005221CrossRefGoogle Scholar
Sagastizábal, C. (2012). Divide to conquer: decomposition methods for energy optimization. Math. Program. 134(1), 187222.CrossRefGoogle Scholar
Tawarmalani, M. & Sahinidis, N. V. (2005) A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225249.CrossRefGoogle Scholar
van Ackooij, W., Frangioni, A. & de Oliveira, W. (2016) Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support. Comput. Optim. Appl. 65(3), 637669.CrossRefGoogle Scholar
Van Slyke, R. M. & Wets, R. (1969) L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17(4), 638663.CrossRefGoogle Scholar
Wang, Z., Glynn, P. W. & Ye, Y. (2015) Likelihood robust optimization for data-driven problems. Comput. Manag. Sci. 13(2), 241261.CrossRefGoogle Scholar
Wiesemann, W., Tsoukalas, A., Kleniati, P.-M. & Rustem, B. (2013) Pessimistic bilevel optimization. SIAM J. Optim. 23(1), 353380.CrossRefGoogle Scholar
Wozabal, D. (2010) A framework for optimization under ambiguity. Ann. Oper. Res. 193(1), 2147.CrossRefGoogle Scholar
Xie, W. (2020) Tractable reformulations of two-stage distributionally robust linear programs over the type- $\infty$ Wasserstein ball. Oper. Res. Lett. 48(4), 513523.CrossRefGoogle Scholar