The Coronavirus Disease 2019 (COVID-19) is a reminder of how an emerging infectious disease can rapidly become a pandemic. Technological advances and societal changes of the last century exacerbated the impact of COVID-19. Rapid population growth, increased mobility, urbanization, societal interdependence, unreliable healthcare systems, and heightened inequalities created an unprecedented vulnerability to a fast-moving infectious disease outbreak. COVID-19 and the response had disproportionate health and socio-economic effects on low-income communities, the self-employed, elderly, and people with underlying health conditions with limited access to health care. 1 In addition, economically vulnerable populations were unable to endure long-term lockdowns and most countries lacked the ability to maintain a full nationwide relief operation. Reference Ryan, Coppola and Canyon2
A resilient public health system can mitigate the impact of disease outbreaks, pandemics, and disasters. This includes the ability to respond, recover and absorb shocks while continuing to serve community needs and sustain vital functions. Reference Kruk, Myers and Varpilah3 , Reference Haldane, De Foo and Abdalla4 Resilience requires the agility to rapidly adapt to dynamic situations, which can mitigate vulnerability across and beyond the system. Reference Haldane, De Foo and Abdalla4 Success results in returning to a stable and recovered condition without compromising long-term development. Reference Behrens, Rauner and Sommersguter-Reichmann5 However, border restrictions and lockdowns increased food insecurity worldwide by slowing agricultural production and dramatically raising food prices. 6 School closures resulted in students losing one to two years of competencies, and despite favorable conditions, students made little or no progress while learning from home. Reference Engzell, Frey and Verhagen7 Learning loss was most pronounced among students from disadvantaged homes. Reference Vlachos, Hertegård and Svaleryd8
An estimated US$10 trillion earning losses occurred during the pandemic and it will take approximately 500 years of preparedness spending to equal what was lost globally. 6 Long-term total lockdowns negatively impacted mental health and access to essential healthcare, especially for people with chronic diseases. Reference Roberton, Carter and Chou9–Reference Jain and Dupas13 Managing the competing priorities of enabling communities to function while providing care for people with COVID-19, patients who need care every day, and maintaining safety efforts such as robust infection-control practices was both difficult and essential. Reference Fleisher, Schreiber and Cardo14 The COVID-19 pandemic serves as a wake-up call for public health systems and facility leaders to become more adaptable and focused on meeting whole-of-society needs. Reference Capolongo, Gola and Brambilla15
A frame for achieving this is the World Health Organization (WHO) Health Emergency and Disaster Risk Management Framework (Health EDRM). It provides a useful series of tools and approaches for sharing country and community experiences, essential to informing an all-hazards risk management approach to public health. 16 A key aspect of this is measuring the resilience of a community and then identifying priority areas for local action. Also, health equity and outcomes must be considered and are strongly dependent on robust collaboration across sectors including governance, financing, health workforce, public health, medical products and technologies. Reference Haldane, De Foo and Abdalla4 Complementary to this is the United Nations Office for Disaster Risk Reduction (UNDRR) Public Health System Resilience Scorecard (Scorecard).
The Scorecard is aligned with the Health EDRM and enables the establishment of a baseline and priorities for the resilience of a public health system using a multidisciplinary consensus-based approach. It was developed with input from a group of multisectoral experts, including UNDRR and WHO. 17 It was created after application of the Disaster Resilience Scorecard for Cities revealed a need for a deeper dive into the health sector. Reference Ryan, Telford and Brickhouse18 The Scorecard Version 1.0 was launched in July 2018 and Version 2.0 in April 2020, which included contributions from authors of this paper (B.R. and S.B.). 19 It is freely downloadable, available in fifteen languages, and has been used by local, provincial, and national governments in many parts of the world. 17
The aim of this study was to identify and prioritize strategies for strengthening public health system resilience for pandemics, disasters, and other emergencies using the Scorecard approach. This included applying the Scorecard in different scenarios, countries, and settings. Enabling complexity and sub-system interactions to be explored and help identify weaknesses affecting multiple social and physical factors. Local community members, public health representatives and others who experience the day-to-day impacts of emergencies were involved in this project. This group understands the areas requiring the most urgent improvement and are crucial when determining viable strategies for improving public health system resilience.
Methods
Setting and Participants
Purposeful sampling was used to select participants and workshop locations. Reference Creswell20 The selection of participants was determined by discussion with local representatives and invitations were sent by e-mail. Workshop participants included individuals who provided clinical care, public health, emergency management, and other community services during the COVID-19 pandemic. The workshop locations were selected based on access and convenience to ensure variety among rural and urban settings in several continents. In addition, we asked the invitees if there were any others who should be invited to participate, a recruitment approach consistent with snowball sampling. Reference Sadler, Lee and Lim21,Reference Kennedy-Shaffer, Qiu and Hanage22
Procedure
The study commenced with training of workshop facilitators on the Scorecard approach. This was followed by individual workshops where the Scorecard was applied to identify and define local priorities. After the individual workshops, the data were aggregated, analyzed, and interpreted to develop priority strategies reflective of participating locations. This study also incorporates the qualitative analysis of the Scorecard workshops in Turkey. Reference Tayfur, Şimsek and Gunduz23 This expanded and more detailed study allowed the Scorecard method and findings to be evaluated across different settings. More details on the methods used are provided in Figure 1 and the following.
Scorecard Workshop Format
The workshop format was based on the Disaster Resilience Scorecard for Cities, which was developed as a contribution to the Making Cities Resilient (MCR) Campaign. 24 The lead designers for this approach were AECOM (Architecture, Engineering, Construction, Operations, and Management) and IBM (International Business Machines) with support from the United States Agency for International Development (USAID) and the European Commission. 24 The Scorecard used in the study was chosen because of the frequent use by practitioners around the world and alignment with both the Health EDRM (Emergency and Disaster Risk Management Framework), Ten Essentials for MCR, 25 and MCR2030. 17,26 It also overlaps with the coverage of hospitals and food distribution in Essential 8 for the Ten Essentials for MCR but can be considered an amplification. Reference Ryan, Telford and Brickhouse18
The 23 questions/indicators for the Scorecard are spread thematically across a modified version of the Ten Essentials for MCR, which relate to public health systems and include:
-
Integration of public health and governance (Essential 1);
-
Integration of public health and disaster scenarios (Essential 2);
-
Integration of public health and finances (Essential 3);
-
Integration of public health and land use/building codes (Essential 4);
-
Management of ecosystem services that affect public health (Essential 5);
-
Integration of public health and institutional capacity (Essential 6);
-
Integration of public health and societal capacity (Essential 7);
-
Integration of public health and infrastructure resilience (Essential 8);
-
Integration of public health and disaster response (Essential 9);
-
Integration of public health and recovery/building back better (Essential 10).
Facilitators guided participants through the Scorecard during the workshop and ranking of strategies developed. This approach was selected because it provides an excellent platform to identify, explore, and understand the complex factors and processes of the public health system. Reference Ørngreen and Levinsen27 The participatory and interactive characteristics of workshops provide an ideal approach to leverage community-led knowledge that is needed to influence future processes and strategies. Reference Ørngreen and Levinsen27–Reference Sanchez-Betancourt and Vivier29 Also, this is ideal when engaging a diverse range of stakeholders involved in shaping strategic actions within sub-systems and identifying factors that may not be clearly noticeable before the study. Reference Ørngreen and Levinsen27,Reference McDonald30
Data Collection and Analysis
Five workshops were conducted from October 2021 to February 2022. Two workshops were held in the United States of America (USA) in Waco, Texas (October 13, 2021), Dallas, Texas (February 28, 2022); 2 in Turkey, Ortahisar (November 3, 2021) and Esenler (November 17, 2021); and 1 in Slovenia, Ljubljana (February 18, 2022). The Scorecard was completed based on the experiences, perspectives, roles, and respective expertise of participants. Facilitators encouraged group discussion about each question/indicator and the associated level of resilience observed while providing contextual information. Both in-person and online participation were used due to varying pandemic measures and constraints in-place. A mobile phone application ExPo Go © 2022 was developed to allow participants to document and submit scores on each Scorecard question/indicator. For those not able to use ExPo Go © 2022, a Google document was used.
The workshops were designed to be conducted in 2 parts over 1 day. Part 1 focused on participants reviewing the 23 questions/indicators using a Likert type scale with 0 the lowest score and 5 the highest. Scores from each participant were aggregated to develop a mean for each question/indicator. In part 2, aggregated scores were presented to the workshop participants for analysis with discussion focused on the lowest ranking questions/indicators highlighted for group discussion. The decision on removal, clarification and ranking of an indicator was determined by workshop participants through a consensus approach. Reference Ryan, Telford and Brickhouse18,Reference Hsu and Sandford31 Once consensus was reached, participants developed a strategy for each selected question/indicator. An impact versus difficulty process was then conducted to determine priority strategies. Reference Simon and Canacari32 Due to time constraints, the Dallas Workshop was completed on 2 separate days, February 28, 2022 and June 28, 2022. The prioritization process was completed during a 1-hour virtual discussion with 9 participants (all except 1 attended the first workshop) on the second day.
Data from all workshops were then aggregated, analyzed, and interpreted to develop priorities representative of participating locations. This analysis was undertaken by several authors (A.F., A.S., B.R., C.N., I.T., P.S., R.F., R.S., S.N., and T.H.). One-way analysis of variance (ANOVA) and the Duncan test was conducted (author R.F.) and reviewed (author B.R.). This method was used to determine the significant differences among workshops at a significance level of P < 0.05.
Results
Sample Characteristics
One hundred twenty-five people participated in the 5 workshops (Table 1). There were 62% male and 38% female participants. Within this group, 54% declared themselves local representatives, 36% regional, and 10% external (outside the region). The results from each workshop were aggregated, the mean for each indicator calculated and a statistical analysis conducted. The results are described below along with the individual workshop recommendations and aggregated priority strategies from all workshops.
Note: Numbers in parentheses represent participants at the Dallas follow-up workshop on June 28, 2022.
Workshops Results
The workshop scores and data analysis are provided in Table 2. Strong statistical differences were found in support of questions relating to accessibility of individual health records after a disaster (A6.2.2), community willingness to act on public health information (A7.1.2), considering the needs of existing medical conditions (A9.3), and supplies/equipment (A9.4) (P < 0.0001). Similar scores were provided for questions relating to inclusion of public health in disaster risk management governance (A1.1), considering disaster outbreaks in disaster planning (A2.1), funding (A3.1), location of health facilities (A4.1), and ecosystems and the effect on public health (A5.1) with no statistical differences observed (P > 0.05). For all other questions, statistical significance among groups was observed (p < 0.05).
Note: Waco (W), Esenler (E), Ortahisar (O), Ljubljana (L), Dallas (D); Values in a row followed by a different letter are significantly different in the Duncan (P < 0.05) test. *P < 0.05. #P > 0.05.
Individual Workshop Recommendations
After completing the scoring, the workshop participants discussed the results and identified priority recommendations (Table 3). Based on the scoring, addressing community mental health needs (A9.2) was the priority identified in the Waco, Dallas, (USA) and Esenler (Turkey) workshops. This was scored as the second priority in Ortahisar (Turkey) and Ljubljana (Slovenia). Protecting ecosystem services (A5.1) was the area needing most attention in Ortahisar (Turkey) while this was deemed a priority 4 in Dallas (USA). The workshop in Ljubljana identified the needs of higher risk populations (A9.3) as a priority and this was number 4 in Dallas and Waco. While discussing the results at the Dallas workshop, the community’s willingness to act upon public information (A7.1.2) moved from priority 2 to 1 after an action for this item was developed. At the Waco workshop, the indicator relating to pre-existing chronic health issues moved from priority 3 to 2 after developing an action for addressing this challenge. Also, a similar outcome occurred in Ljubljana where the indicator relating to addressing mental health needs (A7.2) moved from priority 2 to 1 once an action item was developed.
The highest scoring indicators for all the workshops related to the integration of public health and disaster response. This demonstrated workshop participants considered this the most developed aspect in-terms of public health system resilience. More specifically, integration of the public health sector and professionals with the emergency management team (A9.2) scored highest in Dallas, Ortahisar, and Waco. The highest scoring indicator in Ljubljana related to early warning systems for impending emergencies with health effects (A9.1). In Esenler, the ability for the city to supply items and equipment to maintain public health (A9.4) received the highest score.
Aggregated Priority Strategies
The workshops identified 21 priorities across 4 of the public health system Ten Essentials for MCR (Table 4). This included inclusion of public health in disaster scenarios (Essential 2), management of ecosystem services that affect public health (Essential 5), public health and societal capacity (Essential 7), and integration of public health and disaster response (Essential 9). After considering participant discussion, the priority strategies were grouped by the authors (B.R., M.K., R.F., and P.S.) into the themes of governance, planning and preparation, and response and recovery. Following this process, integrated priority strategies from all 5 workshops were developed with 8 provided. The theme with the most identified strategies was planning and preparation with 10 priorities and 5 after integration.
a The priority strategies for the Esenler and Ortahisar workshops are included in a qualitative analysis of the Scorecard application in Turkey 24
The 8 integrated priorities reflect the areas in most need for public investment to improve the resilience of public health systems. The strategies are prioritized in the following based on the number of workshop recommendations integrated into each action. Where there was a tie, the ranking from each workshop was totaled with the lowest overall score used to determine priority (see parenthesis for each workshop action in Table 4). If this did not resolve the tie, alphabetical order was used.
-
1. Evaluate mental health care needs in communities and address gaps through broad training of community members.
-
2. Explore what communication strategies worked well and built trust during the COVID-19 pandemic and other disasters.
-
3. Identify and examine ecosystem risks and needs to protect and sustain public health at the local level.
-
4. Explore the resilience of existing facilities, alternate care sites and institutions involved in delivering public health services.
-
5. Explore options for providing non-medical needs for high-risk populations before, during, and after a pandemic, disaster, or other crisis.
-
6. Embed long-term recovery and evaluations into disaster management systems at the community level.
-
7. Identify and assess community disease burden (mapping), and system needs depending on the duration of the disaster/incident.
-
8. Evaluate the adequacy of the reserve funds in institutions and organizations responsible for disaster response.
Limitations
Our study has several limitations. First, self-selection bias is a potential limitation. Participants were interested in this study area and wanted to contribute during the COVID-19 pandemic. However, the aim was to maximize participation and identify locations with the willingness and ability to apply the Scorecard using a workshop methodology. A vital aspect of this research leveraged existing experience and knowledge of local public health systems, emergency management, and other aspects of societal responses to a disaster situation. Existing networks and contacts were used to identify participants from a range of sectors, which was followed by asking if there was anyone else who may be interested in participating. This approach was consistent with purposeful and snowball sampling techniques. Second, the direction of this study was influenced by the work of the authors and researchers in this field. To minimize this impact, an interdisciplinary, multinational team completed this study. The experience of the team encompassed medicine, nursing, environmental health science, public health, risk management, health promotion, emergency management, and information technology. Third, the application of the findings should be applied cautiously as priority needs and areas may not be generalized to other countries with their distinct health delivery systems, comprising unique legislative and organizational characteristics, and within different clinical and political settings. Fourth, the research was undertaken during the COVID-19 pandemic with most strategies identified based on participant experience. However, this limitation was mitigated due to the uniqueness of this situation that provided the opportunity to better understand the impacts of a simultaneous event or hazard.
Discussion
Our findings demonstrate the actions needed to strengthen public health systems for the next pandemic, disaster, or other emergency. We found alignment of the Scorecard with the Health EDRM demonstrates their useful potential in rapidly sharing country and community experiences and areas for system improvement. This includes the enablers and barriers affecting the implementation and design of risk management strategies relating to public health system resilience. For example, all workshop participants identified the need to enhance mental health care, services, and capacities. The participants in Dallas, Esenler, Ortahisar, and Waco discussed the importance of ensuring adequate facilities and staff when there is a surge of patients. Participants at the Dallas, Ljubljana, and Waco workshops also highlighted the needs of people at risk, such as those with chronic diseases, should be included in response and recovery activities along with the delivery of non-medical services and supplies.
The workshops identified mental health services as a priority area for strengthening resilience. This is consistent with other studies, which have reported mental health care represents 1 of the most predominant concerns post pandemic. Reference Kola, Kohrt and Hanlon33–35 Any ongoing traumatic event such as a pandemic or disaster clean-up can result in depression, anxiety, stress, and even posttraumatic stress disorder. Reference Tan, Wang and Yap36 Health-care workers are also at high risk of developing mental health issues during an ongoing crisis as they are often faced with living in the area impacted along with physical and mental exhaustion. Reference Saragih, Tonapa and Saragih37 To address this risk, mental health services at the local government and organizational level must be evaluated and become more accessible during a crisis.
Many participants expressed deep concerns about the ability of existing emergency management structures to better support hospitals during patient surges, a finding that requires further investigation. Reference Massaro, Tamburro and La Torre38 This could include enabling telehealth and primary health to manage patients at home using telehealth and remote patient monitoring and directly supporting hospital staff during a crisis. Reference Parretti, Tartaglia and La Regina39 The repurposing and redeployment of the existing health workforce, students, and volunteers during the COVID-19 pandemic and other disasters is another option that requires exploration. Reference Williams, Maier and Scarpetti40 The resilience of existing facilities, alternate sites, and institutions involved in delivering health services should also be evaluated. A starting point could be the formation of local community working groups to evaluate data, motivate citizens to create an effective learning system, and help sustain local health services during a crisis. Reference Ramaswamy, Ramaswamy and Holly41
A better understanding is required of nonmedical needs before, during, and after a disaster. This includes access to shelter, water, food, clothing, employment, and social connections. These needs contribute to the drivers of risk and were identified in the 2009 Global Assessment Report, more than 10 y before the COVID-19 pandemic. Examples include poorly planned and managed urban developments, vulnerable rural livelihoods, environmental degradation, poverty, and inequality, all of which generate and accumulate disaster risk, especially in low-income communities and households. 42 Many of the solutions to nonmedical needs are within services already provided by community organizations or the private sector. Highlighting the need for emergency management and public health systems to include those who provide community wellbeing and support services daily in preparedness and response planning. Non-medical needs are also the foundation of a functioning society and are vitally important because individuals, communities, businesses, and local organizations are key to helping the public health system overcome and meet future challenges. Reference Marshall, Gordon and Gladman43
The COVID-19 pandemic has revealed current resources and supply chains lack the flexibility and diversity required to support community resilience in a crisis. Reference Beninger and Francis44 Frameworks to address this risk could include Maslow’s hierarchy of needs and the social determinants of health. Reference Ryan, Coppola and Canyon2,Reference Maslow45–47 By aligning supply chains, decisions, and actions with societal priorities and needs, all segments of society will be catered to and met while managing the crisis. Reference Ryan, Coppola and Canyon2 Key considerations include what is needed to maintain access to health-care services, water and sanitation, lifestyle, education, and productive and safe working and living conditions. Reference Whitehead and Dahlgren48 Input must be sought from beyond the emergency management and public health system to allow community and private organizations, such as transport companies, universities, and schools to help solve this challenge. Reference Ryan, Coppola and Canyon2,Reference Donahue49 This could be achieved by building local community decision-making competencies in community coalitions to better interpret data, inform and tailor preparedness actions to local needs, and support long-term recovery groups and coalitions. Reference Ramaswamy, Ramaswamy and Holly50
There is a need to identify and assess public health ecosystem risks. The ecosystem is a biological community consisting of living organisms (including humans) in a particular area and nonliving components, such as air, water, and mineral soil, with which the organisms interact. 51 The significance of ecosystem health is increasingly being recognized as a key to human health risk assessment. Reference Lu, Wang and Zhang52–Reference Everard, Johnston and Santillo54 For example, increasing animal interactions are driving factors in pathogen transfer due to the close relationships between humans, animals, and environmental health. Reference Everard, Johnston and Santillo54 This is a challenge for low, middle, and high income countries. For example, an estimated 57 million people across Europe and North America lack piped water at home, which compromises the ability to address and mitigate human health risks from the environment. Reference Everard, Johnston and Santillo54,Reference Uhlenbrook and Connor55 Degradation of ecosystems and their services also increases risks of human-to-human transmission and effective care of the infected. Reference Everard, Johnston and Santillo54 Better understanding of this relationship can provide a sustainable approach to mitigating the impact of future disease outbreaks, pandemics, and disasters.
The COVID-19 pandemic overwhelmed many health systems and societal functions, highlighting the need to better understand elements of the response and what needs strengthening. Reference Haldane, De Foo and Abdalla4 Planners need to understand how systems are linked to each other, and how a weakness in the health system can lead to impacts in other systems and sectors. Locations that weathered the pandemic the best had public health systems ready to respond, populations that sought early care, and a priority to implement actions and measures to balance the tensions between protecting lives and community viability. Reference Msemburi, Karlinsky and Knutson56 The recommendations from this study provide a path for public health systems and their leaders to become more flexible, agile, and resilient.
Conclusions
Communities that weathered the COVID-19 pandemic most effectively were ready to respond, had populations that sought early care, and balanced the tensions between protecting lives and community viability. Application of the Scorecard and its alignment with the Health EDRM was effective in identifying and prioritizing strategies across different communities and countries. These recommendations include assessing community disease burden; embedding long-term recovery groups in emergency systems; exploring mental health care needs; examining ecosystem risks; evaluating reserve funds; identifying what crisis communication strategies worked well; providing non-medical services; and reviewing resilience of existing facilities, alternate care sites, and institutions. We recommend implementing interventions addressing these strategies to help ensure investment in societal priorities, which are vital to strengthen the resilience of public health systems for future pandemics, disasters, and other emergencies.
Acknowledgements
The authors thank the workshop participants for their willingness to provide input and advice on how to strengthen the resilience of public health systems.
Authors contributions
Benjamin Ryan: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Funding acquisition (lead); Investigation (lead); Methodology (equal); Project administration (equal); Resources (equal); Supervision (lead); Validation (lead); Visualization (lead); Writing – original draft, review, and editing (lead). Mayumi Kako: Conceptualization (lead); Data curation (supporting); Formal analysis (supporting); Funding acquisition (lead); Investigation (lead); Methodology (equal); Project administration (equal); Resources (equal); Supervision (lead); Validation (lead); Visualization (lead); Writing – review, and editing (equal). Rok Fink: Data curation (equal); Formal analysis (lead); Investigation (equal); Methodology (supporting); Validation (equal); Visualization (lead); Writing – review and editing (equal). Perihan Şimşek: Data curation (lead); Formal analysis (lead); Methodology (supporting); Validation (equal); Writing – review and editing (equal). Paul Barach: Validation (equal); Writing – review and editing (equal). Jose Acosta: Data curation (supporting); Resources (equal); Validation (equal). Sanjaya Bhatia: Methodology (equal); Validation (equal); Writing – review and editing (equal). Mark Brickhouse: Formal analysis (supporting); Methodology (supporting); Validation (supporting); Writing – review and editing (supporting). Matthew Fendt: Data curation (lead); Resources (lead); Validation (equal). Alicia Fontenot: Data curation (lead); Formal analysis (lead); Methodology (supporting); Validation (supporting); Writing – review and editing (equal). Nahuel Arenas Garcia: Methodology (equal); Validation (equal); Writing – review and editing (equal). Shelby Garner: Data curation (equal); Validation (lead); Writing – review and editing (equal). Abdülkadir Gunduz: Data curation (supporting); Validation (supporting); Writing – review and editing (supporting). Mike Hardin: Data curation (equal); Validation (equal); Writing – review and editing (equal). Tim Hatch: Data curation (lead); Formal analysis (lead); Validation (lead); Writing – review and editing (equal). LaShonda Malrey-Horne: Methodology (supporting); Validation (supporting); Writing – review and editing (supporting). Makiko MacDermot: Data curation (supporting); Funding acquisition (supporting); Methodology (supporting); Project administration (supporting); Writing – review and editing (supporting). Ryoma Kayano: Funding acquisition (supporting); Validation (equal); Writing – review and editing (supporting). Joshua McKone: Data curation (supporting); Resources (equal); Validation (equal). Chaverle Noel: Data curation (lead); Formal analysis (lead); Methodology (supporting); Validation (supporting); Writing – review and editing (supporting). Shuhei Nomura: Formal analysis (lead); Methodology (supporting); Validation (equal); Writing – review and editing (supporting). Jeremy Novak: Validation (supporting); Writing – review and editing (supporting). Andrew Stricklin: Data curation (lead); Formal analysis (lead); Validation (equal); Writing – review and editing (equal). Raymond Swienton: Data curation (lead); Formal analysis (lead); Validation (equal); Writing – review and editing (equal). Ismail Tayfur: Data curation (lead); Formal analysis (lead); Methodology (supporting); Validation (equal); Writing – review and editing (equal). Bryan Brooks: Conceptualization (lead); Data curation (equal); Formal analysis (supporting); Funding acquisition (lead); Investigation (supporting); Methodology (equal); Project administration (supporting); Resources (equal); Supervision (supporting); Validation (equal); Visualization (equal); Writing – review and editing (equal).
Funding
This research was supported by the World Health Organization Centre for Health Development (WHO Kobe Centre – WKC: K21002). In-kind support and guidance were provided by the United Nations Office for Disaster Risk Reduction’s Global Education and Training Institute and the regional office for the Americas and Caribbean.
Ethical statement
This study was approved and determined by Baylor University Institutional Review Board (IRB Reference #1792629) to meet the exclusion criteria for institutional review board approval. Participants were invited to attend the workshops and provided oral consent to participate and have the workshop recorded.