Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T22:19:12.750Z Has data issue: false hasContentIssue false

A practical environment potential field modelling method for complex geometric objects

Published online by Cambridge University Press:  15 September 2022

Zhongxian Zhu
Affiliation:
Marine Engineering College, Dalian Maritime University, Dalian, China
Hongguang Lyu*
Affiliation:
Navigation College, Dalian Maritime University, Dalian, China
Jundong Zhang
Affiliation:
Marine Engineering College, Dalian Maritime University, Dalian, China
Yong Yin
Affiliation:
Navigation College, Dalian Maritime University, Dalian, China
Xiang Fan
Affiliation:
Shanghai Merchant Ship Design and Research Institute, Shanghai, China
*
*Corresponding author. E-mail: lhg@dlmu.edu.cn.

Abstract

Several studies have been conducted on collision avoidance (CA) and path planning for maritime autonomous surface ships (MASS) based on artificial potential field (APF) and electronic navigation chart (ENC) data. However, to date, accurate, highly efficient, and automatic modelling of complicated geometry environment potential fields (EPFs) has not been realised. In this study, an accurate EPF model is established using ENC data to describe different types of obstacles, navigable areas, and non-navigable areas. The implicit equations of complex polygons are constructed based on the R-function theory, and the discrete-convex hull method is introduced to realise the automatic modelling of EPF. Moreover, collaborative CA and obstacle avoidance (OA) experiments are designed and conducted in a simulated environment and based on the ENC data. The results show that the proposed EPF modelling method is accurate, reliable, and time-efficient even with numerous ENC data and complex shapes owing to the R-function representation for geometric objects and discrete-convex hull method. The combination of improved APF and EPF models is proven to be effective for CA and OA. This paper presents a practical EPF modelling approach for APF-based ship path planning.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brcko, T., Androjna, A., Srše, J. and Boć, R. (2021). Vessel multi-parametric collision avoidance decision model: fuzzy approach. Journal of Marine Science and Engineering, 9(1), 124. doi:10.3390/jmse9010049CrossRefGoogle Scholar
Chen, P., Huang, Y., Mou, J. and van Gelder, P. H. A. J. M. (2018). Ship collision candidate detection method: a velocity obstacle approach. Ocean Engineering, 170, 186198. doi:10.1016/j.oceaneng.2018.10.023CrossRefGoogle Scholar
Cheng-Bo, W., Xin-Yu, Z., Jia-Wei, Z., Zhi-Guo, D. and Lan-Xuan, A. N. (2019). Navigation behavioural decision-making of MASS based on deep reinforcement learning and artificial potential field. Journal of Physics: Conference Series, 1357(1). doi:10.1088/1742-6596/1357/1/012026Google Scholar
Cheng, Y. and Zhang, W. (2018). Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels. Neurocomputing, 272, 6373. doi:10.1016/j.neucom.2017.06.066CrossRefGoogle Scholar
Chiang, H. T., Malone, N., Lesser, K., Oishi, M. and Tapia, L. (2015). Path-Guided Artificial Potential Fields with Stochastic Reachable Sets for Motion Planning in Highly Dynamic Environments. Proceedings - IEEE International Conference on Robotics and Automation, 2015, 23472354. doi:10.1109/ICRA.2015.7139511CrossRefGoogle Scholar
Dobkin, D., Guibas, L., Hershberger, J. and Snoeyink, J. (1993). An efficient algorithm for finding the CSG representation of a simple polygon. Algorithmica, 10(1), 123. doi:10.1145/54852.378472CrossRefGoogle Scholar
Du, L., Banda, O. A. V., Huang, Y., Goerlandt, F., Kujala, P. and Zhang, W. (2021). An empirical ship domain based on evasive maneuver and perceived collision risk. Reliability Engineering and System Safety, 213. https://doi.org/10.1016/j.ress.2021.107752CrossRefGoogle Scholar
Eriksen, B. O. H., Wilthil, E. F., Flåten, A. L., Brekke, E. F. and Breivik, M. (2018). Radar-Based Maritime Collision Avoidance Using Dynamic Window. IEEE Aerospace Conference Proceedings, 1–9 March 2018. doi:10.1109/AERO.2018.8396666CrossRefGoogle Scholar
Fan, X., Guo, Y., Liu, H., Wei, B. and Lyu, W. (2020). Improved artificial potential field method applied for AUV path planning. Mathematical Problems in Engineering, 2020. doi:10.1155/2020/6523158CrossRefGoogle Scholar
Fiskin, R., Nasiboglu, E. and Yardimci, M. O. (2020). A knowledge-based framework for two-dimensional (2D) asymmetrical polygonal ship domain. Ocean Engineering, 202. doi:10.1016/j.oceaneng.2020.107187CrossRefGoogle Scholar
Fougerolle, Y. D., Gribok, A., Foufou, S., Truchetet, F. and Abidi, M. A. (2005). Boolean operations with implicit and parametric representation of primitives using R-functions. IEEE Transactions on Visualization and Computer Graphics, 11(5), 529538. doi:10.1109/TVCG.2005.72CrossRefGoogle ScholarPubMed
Gan, J., Yuan, H., Li, S., Peng, Q. and Zhang, H. (2021). An analytical method for shallow spherical shell free vibration on two-parameter foundation. Heliyon, 7, 1. doi:10.1016/j.heliyon.2020.e05876CrossRefGoogle ScholarPubMed
Huang, Y., Chen, L., Chen, P., Negenborn, R. R. and van Gelder, P. H. A. J. M. (2020). Ship collision avoidance methods: State-of-the-art. Safety Science, 121, 451473. doi:10.1016/j.ssci.2019.09.018CrossRefGoogle Scholar
Kuwata, Y., Wolf, M. T., Zarzhitsky, D. and Huntsberger, T. L. (2014). Safe maritime autonomous navigation with COLREGS, using velocity obstacles. IEEE Journal of Oceanic Engineering, 39(1), 110119. https://doi.org/10.1109/JOE.2013.2254214CrossRefGoogle Scholar
Li, L., Wu, D., Huang, Y. and Yuan, Z. M. (2021). A path planning strategy unified with a COLREGS collision avoidance function based on deep reinforcement learning and artificial potential field. Applied Ocean Research, 113. doi:10.1016/j.apor.2021.102759CrossRefGoogle Scholar
Liu, J.-Y. and Ahang, H.-L. (2001). An introduction to theory of R-functions and a survey on their applications. Journal of Engineering Graphics, 02, 114123.Google Scholar
Liu, Y. and Bucknall, R. (2015). Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean Engineering, 97, 126144. doi:10.1016/j.oceaneng.2015.01.008CrossRefGoogle Scholar
Liu, Y. and Bucknall, R. (2018). Efficient multi-task allocation and path planning for unmanned surface vehicle in support of ocean operations. Neurocomputing, 275, 15501566. doi:10.1016/j.neucom.2017.09.088CrossRefGoogle Scholar
Lu, Z. R. and Wang, L. (2019). Cavity identification in elastic structures by explicit domain mapping and boundary mode sensitivity analysis. European Journal of Mechanics, A/Solids, 75, 109127. doi:10.1016/j.euromechsol.2019.01.015CrossRefGoogle Scholar
Lyu, H. and Yin, Y. (2018a). Fast path planning for autonomous ships in restricted waters. Applied Sciences (Switzerland), 8(12). doi:10.3390/app8122592Google Scholar
Lyu, H. and Yin, Y. (2018b). Ship's Trajectory Planning for Collision Avoidance at Sea Based on Modified Artificial Potential Field. 2nd International Conference on Robotics and Automation Engineering, ICRAE 2017, 2017, 351357. doi:10.1109/ICRAE.2017.8291409CrossRefGoogle Scholar
Lyu, H. and Yin, Y. (2019a). Path planning of autonomous ship based on electronic chart vector data modelling. Journal of Transport Information and Safety, 37(5), 94106.Google Scholar
Lyu, H. and Yin, Y. (2019b). COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields. Journal of Navigation, 72(3), 588608. doi:10.1017/S0373463318000796CrossRefGoogle Scholar
Montiel, O., Orozco-Rosas, U. and Sepúlveda, R. (2015). Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Expert Systems with Applications, 42(12), 51775191. doi:10.1016/j.eswa.2015.02.033CrossRefGoogle Scholar
Mousazadeh, H., Jafarbiglu, H., Abdolmaleki, H., Omrani, E., Monhaseri, F., Abdollahzadeh, M. R., Mohammadi-Aghdam, A., Kiapei, A., Salmani-Zakaria, Y. and Makhsoos, A. (2018). Developing a navigation, guidance and obstacle avoidance algorithm for an unmanned surface vehicle (USV) by algorithms fusion. Ocean Engineering, 159, 5665. doi:10.1016/j.oceaneng.2018.04.018CrossRefGoogle Scholar
Öztürk, Ü, Akdağ, M. and Ayabakan, T. (2022). A review of path planning algorithms in maritime autonomous surface ships: Navigation safety perspective. Ocean Engineering, 251, 111010. doi:10.1016/j.oceaneng.2022.111010CrossRefGoogle Scholar
Panda, M., Das, B., Subudhi, B. and Pati, B. B. (2020). A comprehensive review of path planning algorithms for autonomous underwater vehicles. International Journal of Automation and Computing, 17(3), 321352. doi:10.1007/s11633-019-1204-9CrossRefGoogle Scholar
Peng, Y., Huang, Z., Tan, J. and Liu, Y. (2016). Calculating minimum distance between geometric objects represented with R-functions. Mechanical Science and Technology for Aerospace Engineering, 35(9), 13301336.Google Scholar
Pêtrès, C., Romero-Ramirez, M. A. and Plumet, F. (2012). A potential field approach for reactive navigation of autonomous sailboats. Robotics and Autonomous Systems, 60(12), 15201527. doi:10.1016/j.robot.2012.08.004CrossRefGoogle Scholar
Rawson, A. and Brito, M. (2021). A critique of the use of domain analysis for spatial collision risk assessment. Ocean Engineering, 219, doi:10.1016/j.oceaneng.2020.108259CrossRefGoogle Scholar
Ren, J., McIsaac, K. A., Patel, R. V. and Peters, T. M. (2007). A potential field model using generalized sigmoid functions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(2), 477484. doi:10.1109/TSMCB.2006.883866CrossRefGoogle ScholarPubMed
Rvachev, V. L. (1982). Theory of R-functions and some applications. Econometrica, 36(5), 3538.Google Scholar
Sang, H., You, Y., Sun, X., Zhou, Y. and Liu, F. (2021). The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations. Ocean Engineering, 223. doi:10.1016/j.oceaneng.2021.108709CrossRefGoogle Scholar
Serigstad, E., Eriksen, B.-O. H. and Breivik, M. (2018). Hybrid collision avoidance for autonomous surface vehicles, IFAC PapersOnLine, 51-29, 1–7. doi:10.1016/j.ifacol.2018.09.460CrossRefGoogle Scholar
Shaobo, W., Yingjun, Z. and Lianbo, L. (2020). A collision avoidance decision-making system for autonomous ship based on modified velocity obstacle method. Ocean Engineering, 215, 107910. doi:10.1016/j.oceaneng.2020.107910CrossRefGoogle Scholar
Shi, C., Zhang, M. and Peng, J. (2007). Harmonic Potential Field Method for Autonomous Ship Navigation. Proceedings, 7th International Conference on Intelligent Transport Systems Telecommunications, 471476. doi:10.1109/ITST.2007.4295916CrossRefGoogle Scholar
Souissi, O., Benatitallah, R., Duvivier, D., Artiba, A., Belanger, N. and Feyzeau, P. (2013). Path Planning: a 2013 Survey. Proceedings of 2013 International Conference on Industrial Engineering and Systems Management, IEEE - IESM 2013, 809–816. https://ieeexplore.ieee.org/document/6761521Google Scholar
Sukumar, N. and Srivastava, A. (2022). Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Computer Methods in Applied Mechanics and Engineering, 389, 114333. doi:10.1016/j.cma.2021.114333CrossRefGoogle Scholar
Tam, C. K., Bucknall, R. and Greig, A. (2009). Review of collision avoidance and path planning methods for ships in close range encounters. Journal of Navigation, 62(3), 455476. doi:10.1017/S0373463308005134CrossRefGoogle Scholar
Tao, S. and Tan, J. (2018). Path planning with obstacle avoidance based on normalized R-functions. Journal of Robotics, 2018, 110. doi:10.1155/2018/5868915CrossRefGoogle Scholar
Vagale, A., Bye, R. T., Oucheikh, R., Osen, O. L. and Fossen, T. I. (2021a). Path planning and collision avoidance for autonomous surface vehicles I: A review. Journal of Marine Science and Technology (Japan), 26(4), 12921306. doi:10.1007/s00773-020-00790-xCrossRefGoogle Scholar
Vagale, A., Bye, R. T., Oucheikh, R., Osen, O. L. and Fossen, T. I. (2021b). Path planning and collision avoidance for autonomous surface vehicles II: A comparative study of algorithms. Journal of Marine Science and Technology (Japan), 26(4), 13071323. doi:10.1007/s00773-020-00790-xCrossRefGoogle Scholar
Varvak, M. (2015). Ellipsoidal/radial basis functions neural networks enhanced with the Rvachev function method in application problems. Engineering Applications of Artificial Intelligence, 38, 111121. doi:10.1016/j.engappai.2014.09.017CrossRefGoogle Scholar
Wang, N., Gao, Y., Zheng, Z., Zhao, H. and Yin, J. (2018). A Hybrid Path-Planning Scheme for an Unmanned Surface Vehicle. 8th International Conference on Information Science and Technology, ICIST 2018, 231236. doi:10.1109/ICIST.2018.8426161CrossRefGoogle Scholar
Wang, S. M., Fang, M. C. and Hwang, C. N. (2019). Vertical obstacle avoidance and navigation of autonomous underwater vehicles with H∞ controller and the artificial potential field method. Journal of Navigation, 72(1), 207228. doi:10.1017/S0373463318000589CrossRefGoogle Scholar
Wu, J., Wang, X., Jiang, H., Zheng, K. and R. L., (2003). Representation for polygons with implicit function. Computer Engineering and Applications, 32, 8789.Google Scholar
Xue, Y., Clelland, D., Lee, B. S. and Han, D. (2011). Automatic simulation of ship navigation. Ocean Engineering, 38(17–18), 22902305. doi:10.1016/j.oceaneng.2011.10.011CrossRefGoogle Scholar
Yuan, X., Zhang, D., Zhang, J., Zhang, M. and Guedes Soares, C. (2021). A novel real-time collision risk awareness method based on velocity obstacle considering uncertainties in ship dynamics. Ocean Engineering, 220. doi:10.1016/j.oceaneng.2020.108436CrossRefGoogle Scholar
Zhang, X., Wang, C., Jiang, L., An, L. and Yang, R. (2021). Collision-avoidance navigation systems for maritime autonomous surface ships: A state of the art survey. Ocean Engineering, 235. doi:10.1016/j.oceaneng.2021.109380CrossRefGoogle Scholar