We show that, under conditions about the microcharacteristic variety of a coherent $\cal D$-module, the Cauchy problem is well-posed in the spaces of formal power series with Gevrey growth. We deduce that the filtration of the Irregularity Sheaf of a holonomic $\cal D$-module, which we defined in a previous work, is preserved under inverse image if some rather general geometric conditions are fullfilled.