We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define a theory of étale motives over a noetherian scheme. This provides a system of categories of complexes of motivic sheaves with integral coefficients which is closed under the six operations of Grothendieck. The rational part of these categories coincides with the triangulated categories of Beilinson motives (and is thus strongly related to algebraic $K$-theory). We extend the rigidity theorem of Suslin and Voevodsky over a general base scheme. This can be reformulated by saying that torsion étale motives essentially coincide with the usual complexes of torsion étale sheaves (at least if we restrict ourselves to torsion prime to the residue characteristics). As a consequence, we obtain the expected results of absolute purity, of finiteness, and of Grothendieck duality for étale motives with integral coefficients, by putting together their counterparts for Beilinson motives and for torsion étale sheaves. Following Thomason’s insights, this also provides a conceptual and convenient construction of the $\ell$-adic realization of motives, as the homotopy $\ell$-completion functor.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.