We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Earth is a powerful organic chemist, transforming vast quantities of carbon through complex processes, leading to diverse suites of products that include the fossil fuels upon which modern societies depend. When exploring how the Earth operates as an organic chemist, it is tempting to turn to how organic reactions are traditionally studied in chemistry labs. While highly informative, especially in terms of insights gained into reaction mechanisms, this approach can also be a source of frustration, as many of the reactants and conditions employed in chemistry labs have few or no parallels to geologic processes. The primary goal of this chapter is to provide examples of predicting thermodynamic influences and using the predictions to design experiments that reveal the mechanisms of how reactions occur at the elevated temperatures and pressures encountered in the Earth. This work is ongoing, and we hope this chapter will inspire numerous and diverse experimental and theoretical advances in hydrothermal organic geochemistry.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.