We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Symplectic finite semifields can be used to construct nonlinear binary codes of Kerdock type (i.e., with the same parameters of the Kerdock codes, a subclass of Delsarte–Goethals codes). In this paper, we introduce nonbinary Delsarte–Goethals codes of parameters
$(q^{m+1}\ ,\ q^{m(r+2)+2}\ ,\ {\frac{q-1}{q}(q^{m+1}-q^{\frac{m+1}{2}+r})})$
over a Galois field of order
$q=2^l$
, for all
$0\le r\le\frac{m-1}{2}$
, with m ≥ 3 odd, and show the connection of this construction to finite semifields.
J. S. Hsia has conjectured an arithmetical version of Springer Theorem, which states that no two spinor genera in the same genus of integral quadratic forms become identified over an odd degree extension. In this paper we prove by examples that the corresponding result for quaternionic skew-hermitian forms does not hold in full generality. We prove that it does hold for unimodular skew-hermitian lattices under all extensions and for lattices whose discriminant is relatively prime to 2 under Galois extensions.
This paper studies how the local root numbers and the Weil additive characters of the Witt ring of a number field behave under reciprocity equivalence. Given a reciprocity equivalence between two fields, at each place we define a local square class which vanishes if and only if the local root numbers are preserved. Thus this local square class serves as a local obstruction to the preservation of local root numbers. We establish a set of necessary and sufficient conditions for a selection of local square classes (one at each place) to represent a global square class. Then, given a reciprocity equivalence that has a finite wild set, we use these conditions to show that the local square classes combine to give a global square class which serves as a global obstruction to the preservation of all root numbers. Lastly, we use these results to study the behavior of Weil characters under reciprocity equivalence.
The Modular Group M is PSL2(Z) the group of linear fractional transformations with integral entries and determinant one. M has been of great interest in many diverse fields of Mathematics, including Number Theory, Automorphic Function Theory and Group Theory. In this paper we give an effective algorithm to determine, for each integer d, a complete set of representatives for the trace classes in trace d. This algorithm depends on the combinatorial group theoretic structure of M. It has been subsequently extended by Sheingorn to the general Hecke groups. The number h(d) of trace classes in trace d is equal to the ideal class number of the field The algorithm mentioned above then provides a new straightforward computational procedure for determining h(d). Finally as an outgrowth of the algorithm we present a wide generalization of the Fermat Two-Square theorem. This last result can also be derived from classical work of Gauss.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.