We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a concrete family of
$2$
-towers
$(\mathbb {Q}(x_n))_n$
of totally real algebraic numbers for which we prove that, for each
$n$
,
$\mathbb {Z}[x_n]$
is the ring of integers of
$\mathbb {Q}(x_n)$
if and only if the constant term of the minimal polynomial of
$x_n$
is square-free. We apply our characterization to produce new examples of monogenic number fields, which can be of arbitrary large degree under the ABC-Conjecture.
Let $K=\mathbb{Q}(\unicode[STIX]{x1D714})$ with $\unicode[STIX]{x1D714}$ the root of a degree $n$ monic irreducible polynomial $f\in \mathbb{Z}[X]$. We show that the degree $n$ polynomial $N(\sum _{i=1}^{n-k}x_{i}\unicode[STIX]{x1D714}^{i-1})$ in $n-k$ variables takes the expected asymptotic number of prime values if $n\geqslant 4k$. In the special case $K=\mathbb{Q}(\sqrt[n]{\unicode[STIX]{x1D703}})$, we show that $N(\sum _{i=1}^{n-k}x_{i}\sqrt[n]{\unicode[STIX]{x1D703}^{i-1}})$ takes infinitely many prime values, provided $n\geqslant 22k/7$.
Our proof relies on using suitable ‘Type I’ and ‘Type II’ estimates in Harman’s sieve, which are established in a similar overall manner to the previous work of Friedlander and Iwaniec on prime values of $X^{2}+Y^{4}$ and of Heath-Brown on $X^{3}+2Y^{3}$. Our proof ultimately relies on employing explicit elementary estimates from the geometry of numbers and algebraic geometry to control the number of highly skewed lattices appearing in our final estimates.
We investigate the density of square-free values of polynomials with large coefficients over the rational function field 𝔽q[t]. Some interesting questions answered as special cases of our results include the density of square-free polynomials in short intervals, and an asymptotic for the number of representations of a large polynomial N as a sum of a k-th power of a small polynomial and a square-free polynomial.
Given $f\in \mathbb{Z}[t]$ of positive degree, we investigate the existence of auxiliary polynomials $g\in \mathbb{Z}[t]$ for which $f(g(t))$ factors as a product of polynomials of small relative degree. One consequence of this work shows that for any quadratic polynomial $f\in \mathbb{Z}[t]$ and any $\unicode[STIX]{x1D700}>0$, there are infinitely many $n\in \mathbb{N}$ for which the largest prime factor of $f(n)$ is no larger than $n^{\unicode[STIX]{x1D700}}$.
We study the Goldbach problem for primes represented by the polynomial $x^{2}+y^{2}+1$. The set of such primes is sparse in the set of all primes, but the infinitude of such primes was established by Linnik. We prove that almost all even integers $n$ satisfying certain necessary local conditions are representable as the sum of two primes of the form $x^{2}+y^{2}+1$. This improves a result of Matomäki, which tells us that almost all even $n$ satisfying a local condition are the sum of one prime of the form $x^{2}+y^{2}+1$ and one generic prime. We also solve the analogous ternary Goldbach problem, stating that every large odd $n$ is the sum of three primes represented by our polynomial. As a byproduct of the proof, we show that the primes of the form $x^{2}+y^{2}+1$ contain infinitely many three-term arithmetic progressions, and that the numbers $\unicode[STIX]{x1D6FC}p~(\text{mod}~1)$, with $\unicode[STIX]{x1D6FC}$ irrational and $p$ running through primes of the form $x^{2}+y^{2}+1$, are distributed rather uniformly.
We determine a bound for the valency in a family of dihedrants of twice odd prime orders which guarantees that the Cayley graphs are Ramanujan graphs. We take two families of Cayley graphs with the underlying dihedral group of order $2p$: one is the family of all Cayley graphs and the other is the family of normal ones. In the normal case, which is easier, we discuss the problem for a wider class of groups, the Frobenius groups. The result for the family of all Cayley graphs is similar to that for circulants: the prime $p$ is ‘exceptional’ if and only if it is represented by one of six specific quadratic polynomials.
The discriminant of a trinomial of the form $x^{n}\pm \,x^{m}\pm \,1$ has the form $\pm n^{n}\pm (n-m)^{n-m}m^{m}$ if $n$ and $m$ are relatively prime. We investigate when these discriminants have nontrivial square factors. We explain various unlikely-seeming parametric families of square factors of these discriminant values: for example, when $n$ is congruent to 2 (mod 6) we have that $((n^{2}-n+1)/3)^{2}$ always divides $n^{n}-(n-1)^{n-1}$. In addition, we discover many other square factors of these discriminants that do not fit into these parametric families. The set of primes whose squares can divide these sporadic values as $n$ varies seems to be independent of $m$, and this set can be seen as a generalization of the Wieferich primes, those primes $p$ such that $2^{p}$ is congruent to 2 (mod $p^{2}$). We provide heuristics for the density of these sporadic primes and the density of squarefree values of these trinomial discriminants.
By establishing an improved level of distribution we study almost-primes of the form $f(p,n)$ where $f$ is an irreducible binary form over $\mathbb{Z}$.
We obtain an asymptotic formula for the number of square-free integers in $N$ consecutive values of polynomials on average over integral polynomials of degree at most $k$ and of height at most $H$, where $H\,\ge \,{{N}^{k-1+\varepsilon }}$ for some fixed $\varepsilon \,>\,0$. Individual results of this kind for polynomials of degree $k\,>\,3$, due to A. Granville (1998), are only known under the $ABC$-conjecture.
In this paper we solve the equation f(g(x))=f(x)hm(x) where f(x), g(x) and h(x) are unknown polynomials with coefficients in an arbitrary field K, f(x) is nonconstant and separable, deg g≥2, the polynomial g(x) has nonzero derivative g′(x)≠0 in K[x] and the integer m≥2 is not divisible by the characteristic of the field K. We prove that this equation has no solutions if deg f≥3 . If deg f=2 , we prove that m=2 and give all solutions explicitly in terms of Chebyshev polynomials. The Diophantine applications for such polynomials f(x) , g(x) , h(x) with coefficients in ℚ or ℤ are considered in the context of the conjecture of Cassaigne et al. on the values of Liouville’s λ function at points f(r) , r∈ℚ.
We show that, for most of the elliptic curves $\text{E}$ over a prime finite field ${{\mathbb{F}}_{p}}$ of $p$ elements, the discriminant $D\left( E \right)$ of the quadratic number field containing the endomorphism ring of $\text{E}$ over ${{\mathbb{F}}_{p}}$ is sufficiently large. We also obtain an asymptotic formula for the number of distinct quadratic number fields generated by the endomorphism rings of all elliptic curves over ${{\mathbb{F}}_{p}}$.
In an earlier paper (see Proc. London Math. Soc. (3) 84 (2002) 257–288) we showed that an irreducible integral binary cubic form $f(x, y)$ attains infinitely many prime values, providing that it has no fixed prime divisor. We now extend this result by showing that $f(m, n)$ still attains infinitely many prime values if $m$ and $n$ are restricted by arbitrary congruence conditions, providing that there is still no fixed prime divisor.
Two immediate consequences for the solvability of diagonal cubic Diophantine equations are given.
The $abc$-conjecture is applied to various questions involving the number of distinct fields $\mathbb{Q}\left( \sqrt{f(n)} \right)$, as we vary over integers $n$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.