We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any subset $Z \subseteq {\mathbb {Q}}$, consider the set $S_Z$ of subfields $L\subseteq {\overline {\mathbb {Q}}}$ which contain a co-infinite subset $C \subseteq L$ that is universally definable in L such that $C \cap {\mathbb {Q}}=Z$. Placing a natural topology on the set ${\operatorname {Sub}({\overline {\mathbb {Q}}})}$ of subfields of ${\overline {\mathbb {Q}}}$, we show that if Z is not thin in ${\mathbb {Q}}$, then $S_Z$ is meager in ${\operatorname {Sub}({\overline {\mathbb {Q}}})}$. Here, thin and meager both mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fields L have the property that the ring of algebraic integers $\mathcal {O}_L$ is universally definable in L. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every $\exists $-definable subset of an algebraic extension of ${\mathbb Q}$ is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials.
We prove that the class of all the rings $\mathbb {Z}/m\mathbb {Z}$ for all $m>1$ is decidable. This gives a positive solution to a problem of Ax asked in his celebrated 1968 paper on the elementary theory of finite fields [1, Problem 5, p. 270]. In our proof, we reduce the problem to the decidability of the ring of adeles $\mathbb {A}_{\mathbb {Q}}$ of $\mathbb {Q}$.
Let E be an elliptic curve with positive rank over a number field K and let p be an odd prime number. Let
$K_{\operatorname {cyc}}$
be the cyclotomic
$\mathbb {Z}_p$
-extension of K and
$K_n$
its nth layer. The Mordell–Weil rank of E is said to be constant in the cyclotomic tower of K if for all n, the rank of
$E(K_n)$
is equal to the rank of
$E(K)$
. We apply techniques in Iwasawa theory to obtain explicit conditions for the rank of an elliptic curve to be constant in this sense. We then indicate the potential applications to Hilbert’s tenth problem for number rings.
It is shown that the positive existential theory of the structure (ℤ[S−1]; =, 0, 1, + , |), where S is a nonempty finite set of prime numbers, is undecidable. This result should be put in contrast with the fact that the positive existential theory of (ℤ; =, 0, 1, + |) is decidable.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.