We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Chabauty–Kim method allows one to find rational points on curves under certain technical conditions, generalising Chabauty’s proof of the Mordell conjecture for curves with Mordell–Weil rank less than their genus. We show how the Chabauty–Kim method, when these technical conditions are satisfied in depth 2, may be applied to bound the number of rational points on a curve of higher rank. This provides a non-abelian generalisation of Coleman’s effective Chabauty theorem.
Building on recent work of Bhargava, Elkies and Schnidman and of Kriz and Li, we produce infinitely many smooth cubic surfaces defined over the field of rational numbers that contain rational points.
Given a family of varieties $X\rightarrow \mathbb{P}^{n}$ over a number field, we determine conditions under which there is a Brauer–Manin obstruction to weak approximation for 100% of the fibres which are everywhere locally soluble.
We study the arithmetic of a family of non-hyperelliptic curves of genus 3 over the field $\mathbb{Q}$ of rational numbers. These curves are the nearby fibers of the semi-universal deformation of a simple singularity of type $E_{6}$. We show that average size of the 2-Selmer sets of these curves is finite (if it exists). We use this to show that a positive proposition of these curves (when ordered by height) has integral points everywhere locally, but no integral points globally.
Let $X$ be a curve over a number field $K$ with genus $g\geq 2$, $\mathfrak{p}$ a prime of ${ \mathcal{O} }_{K} $ over an unramified rational prime $p\gt 2r$, $J$ the Jacobian of $X$, $r= \mathrm{rank} \hspace{0.167em} J(K)$, and $\mathscr{X}$ a regular proper model of $X$ at $\mathfrak{p}$. Suppose $r\lt g$. We prove that $\# X(K)\leq \# \mathscr{X}({ \mathbb{F} }_{\mathfrak{p}} )+ 2r$, extending the refined version of the Chabauty–Coleman bound to the case of bad reduction. The new technical insight is to isolate variants of the classical rank of a divisor on a curve which are better suited for singular curves and which satisfy Clifford’s theorem.
Let X be an algebraic variety and let f:X−−→X be a rational self-map with a fixed point q, where everything is defined over a number field K. We make some general remarks concerning the possibility of using the behaviour of f near q to produce many rational points on X. As an application, we give a simplified proof of the potential density of rational points on the variety of lines of a cubic fourfold, originally proved by Claire Voisin and the first author in 2007.
We study the arithmetic of certain del Pezzo surfaces of degree 2. We produce examples of Brauer-Manin obstruction to the Hasse principle, coming from 2- and 4-torsion elements in the Brauer group.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.