We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For $n=2$ the statement in the title is a theorem of B. Poonen (2009). He uses a one-parameter family of varieties together with a theorem of Coray, Sansuc and one of the authors (1980), on the Brauer–Manin obstruction for rational points on these varieties. For $n=p$, $p$ any prime number, A. Várilly-Alvarado and B. Viray (2012) considered analogous families of varieties. Replacing this family by its $(2p+1)$th symmetric power, we prove the statement in the title using a theorem on the Brauer–Manin obstruction for rational points on such symmetric powers. The latter theorem is based on work of one of the authors with Swinnerton-Dyer (1994) and with Skorobogatov and Swinnerton-Dyer (1998), work generalising results of Salberger (1988).
In this paper, we study bounds for the number of rational points on twists $C'$ of a fixed curve $C$ over a number field ${\mathcal K}$, under the condition that the group of ${\mathcal K}$-rational points on the Jacobian $J'$ of $C'$ has rank smaller than the genus of $C'$. The main result is that with some explicitly given finitely many possible exceptions, we have a bound of the form $2r + c$, where $r$ is the rank of $J'({\mathcal K})$ and $c$ is a constant depending on $C$. For the proof, we use a refinement of the method of Chabauty–Coleman: the main new ingredient is to use it for an extension field of ${\mathcal K}_v$, where $v$ is a place of bad reduction for $C'$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.