We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper focuses on the fundamental aspects of super-resolution, particularly addressing the stability of super-resolution and the estimation of two-point resolution. Our first major contribution is the introduction of two location-amplitude identities that characterize the relationships between locations and amplitudes of true and recovered sources in the one-dimensional super-resolution problem. These identities facilitate direct derivations of the super-resolution capabilities for recovering the number, location, and amplitude of sources, significantly advancing existing estimations to levels of practical relevance. As a natural extension, we establish the stability of a specific $l_{0}$ minimization algorithm in the super-resolution problem.
The second crucial contribution of this paper is the theoretical proof of a two-point resolution limit in multi-dimensional spaces. The resolution limit is expressed as
$$\begin{align*}\mathscr R = \frac{4\arcsin \left(\left(\frac{\sigma}{m_{\min}}\right)^{\frac{1}{2}} \right)}{\Omega} \end{align*}$$
for ${\frac {\sigma }{m_{\min }}}{\leqslant }{\frac {1}{2}}$, where ${\frac {\sigma }{m_{\min }}}$ represents the inverse of the signal-to-noise ratio (${\mathrm {SNR}}$) and $\Omega $ is the cutoff frequency. It also demonstrates that for resolving two point sources, the resolution can exceed the Rayleigh limit ${\frac {\pi }{\Omega }}$ when the signal-to-noise ratio (SNR) exceeds $2$. Moreover, we find a tractable algorithm that achieves the resolution ${\mathscr {R}}$ when distinguishing two sources.
The Hoffman ratio bound, Lovász theta function, and Schrijver theta function are classical upper bounds for the independence number of graphs, which are useful in graph theory, extremal combinatorics, and information theory. By using generalized inverses and eigenvalues of graph matrices, we give bounds for independence sets and the independence number of graphs. Our bounds unify the Lovász theta function, Schrijver theta function, and Hoffman-type bounds, and we obtain the necessary and sufficient conditions of graphs attaining these bounds. Our work leads to some simple structural and spectral conditions for determining a maximum independent set, the independence number, the Shannon capacity, and the Lovász theta function of a graph.
We define extensions of the weighted core–EP inverse and weighted core–EP pre-orders of bounded linear operators on Hilbert spaces to elements of a $C^{\ast }$-algebra. Some properties of the weighted core–EP inverse and weighted core–EP pre-orders are generalized and some new ones are proved. Using the weighted element, the weighted core–EP pre-order, the minus partial order and the star partial order of certain elements, new weighted pre-orders are presented on the set of all $wg$-Drazin invertible elements of a $C^{\ast }$-algebra. Applying these results, we introduce and characterize new partial orders which extend the core–EP pre-order to a partial order.
Let $R$ be a ring and $b,c\in R$. In this paper, we give some characterizations of the $(b,c)$-inverse in terms of the direct sum decomposition, the annihilator, and the invertible elements. Moreover, elements with equal $(b,c)$-idempotents related to their $(b,c)$-inverses are characterized, and the reverse order rule for the $(b,c)$-inverse is considered.
In this paper, double commutativity and the reverse order law for the core inverse are considered. Then new characterizations of the Moore–Penrose inverse of a regular element are given by one-sided invertibilities in a ring. Furthermore, the characterizations and representations of the core and dual core inverses of a regular element are considered.
In this paper, we consider two innovative structured matrices, CUPL-Toeplitz matrix and CUPL-Hankel matrix. The inverses of CUPL-Toeplitz and CUPL-Hankel matrices can be expressed by the Gohberg-Heinig type formulas, and the stability of the inverse matrices is verified in terms of 1-, ∞- and 2-norms, respectively. In addition, two algorithms for the inverses of CUPL-Toeplitz and CUPL-Hankel matrices are given and examples are provided to verify the feasibility of these algorithms.
In this short note, we present a sharp upper bound for the perturbation of eigenvalues of a singular diagonalizable matrix given by Stanley C. Eisenstat [3].
We prove a normalized version of the restricted invertibility principle obtained by Spielman and Srivastava in [An elementary proof of the restricted invertibility theorem. Israel J. Math.190 (2012), 83–91]. Applying this result, we get a new proof of the proportional Dvoretzky–Rogers factorization theorem recovering the best current estimate in the symmetric setting while we improve the best known result in the non-symmetric case. As a consequence, we slightly improve the estimate for the Banach–Mazur distance to the cube: the distance of every $n$-dimensional normed space from ${ \ell }_{\infty }^{n} $ is at most $\mathop{(2n)}\nolimits ^{5/ 6} $. Finally, using tools from the work of Batson et al in [Twice-Ramanujan sparsifiers. In STOC’09 – Proceedings of the 2009 ACM International Symposium on Theory of Computing, ACM (New York, 2009), 255–262], we give a new proof for a theorem of Kashin and Tzafriri [Some remarks on the restriction of operators to coordinate subspaces. Preprint, 1993] on the norm of restricted matrices.
We propose a direct solver for the three-dimensional Poisson equation with a variable coefficient, and an algorithm to directly solve the associated sparse linear systems that exploits the sparsity pattern of the coefficient matrix. Introducing some appropriate finite difference operators, we derive a second-order scheme for the solver, and then two suitable high-order compact schemes are also discussed. For a cube containing N nodes, the solver requires arithmetic operations and memory to store the necessary information. Its efficiency is illustrated with examples, and the numerical results are analysed.
This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.
In this paper we establish the definition of the generalized inverse A(2)T, S which is a {2} inverse of a matrix A with prescribed image T and kernel s over an associative ring, and give necessary and sufficient conditions for the existence of the generalized inverse and some explicit expressions for of a matrix A over an associative ring, which reduce to the group inverse or {1} inverses. In addition, we show that for an arbitrary matrix A over an associative ring, the Drazin inverse Ad, the group inverse Ag and the Moore-Penrose inverse . if they exist, are all the generalized inverse A(2)T, S.
Let aπ denote the spectral idempotent of a generalized Drazin invertible element a of a ring. We characterize elements b such that 1 − (bπ − aπ)2 is invertible. We also apply this result in rings with involution to obtain a characterization of the perturbation of EP elements. In Banach algebras we obtain a characterization in terms of matrix representations and derive error bounds for the perturbation of the Drazin Inverse. This work extends recent results for matrices given by the same authors to the setting of rings and Banach algebras. Finally, we characterize generalized Drazin invertible operators A, B ∈ (X) such that pr(Bπ) = pr(Aπ + S), where pr is the natural homomorphism of (X) onto the Calkin algebra and S ∈(X) is given.
We develop several iterative methods for computing generalized inverses using both first and second order optimization methods in C*-algebras. Known steepest descent iterative methods are generalized in C*-algebras. We introduce second order methods based on the minimization of the norms ‖Ax − b‖2 and ‖x‖2 by means of the known second order unconstrained minimization methods. We give several examples which illustrate our theory.
Additive perturbation results for the generalized Drazin inverse of Banach space operators are presented. Precisely, if Ad denotes the generalized Drazin inverse of a bounded linear operator A on an arbitrary complex Banach space, then in some special cases (A + B)d is computed in terms of Ad and Bd. Thus, recent results of Hartwig, Wang and Wei (Linear Algebra Appl. 322 (2001), 207–217) are extended to infinite dimensional settings with simplified proofs.
In this paper we define and study a generalized Drazin inverse xD for ring elements x, and give a characterization of elements a, b for which aaD = bbD. We apply our results to the study of EP elements in a ring with involution.
We study the perturbation of the generalized Drazin inverse for the elements of Banach algebras and bounded linear operators on Banach space. This work, among other things, extends the results obtained by the second author and Guorong Wang on the Drazin inverse for matrices.
The relationship between properties of the generalized inverse of A, A†, and of the adjoint of A, A*, are studied. The property that A†A and AA† commute, called (E4), is investigated. (E4) generalizes the property of A being EPr. A canonical form and a formula for A† are given if a matrix A is (E4). Results are in a Hilbert space setting whenever possible. Examples are given.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.