Let F be a field of characteristic different from p containing a primitive p-th root of unity. This paper studies the cup product pairing Hl(F, p) x Hl(F, p) → H2(F, p) and its relationship to valuation theory and Galois theory. Sufficient conditions on the pairing which guarantee the existence of a valuation on the field are described. In the non p-adic case these results provide a converse to the well-known structure theory in this situation. In the p-adic case, the pairing is described using the notion of "relative rigidity". These results are analogues of results in quadratic form theory developed in the past decade, which cover the special case p = 2. Applications to the maximal pro-p Galois group of F are also described.