Enochs introduced and studied totally integrally closed rings in the class of commutative rings. This article studies the same question for Azumaya algebras, a study made possible by Atterton's notion of integral extensions for non-commutative rings.
The main results are that Azumaya algebras are totally integrally closed precisely when their centres are, and that an Azumaya algebra over a commutative semiprime ring has a tight integral extension that is totally integrally closed. Atterton's integrality differs from that often studied but is very natural in the context of Azumaya algebras. Examples show that the results do not carry over to free normalizing or excellent extensions.