We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let R be a finite ring and let
${\mathrm {zp}}(R)$
denote the nullity degree of R, that is, the probability that the multiplication of two randomly chosen elements of R is zero. We establish the nullity degree of a semisimple ring and find upper and lower bounds for the nullity degree in the general case.
We investigate the complexity of the equivalence problem over a finite ring when the input polynomials are written as sum of monomials. We prove that for a finite ring if the factor by the Jacobson radical can be lifted in the centre, then this problem can be solved in polynomial time. This result provides a step in proving a dichotomy conjecture of Lawrence and Willard (J. Lawrence and R. Willard, The complexity of solving polynomial equations over finite rings (manuscript, 1997)).
Let $\idemp$ be the set of idempotents in a finite-dimensional real algebra $A$. Let $p$ and $q$ be idempotents that lie in the same component of $\idemp$. Then, among the continuous paths connecting $p$ and $q$ in $\idemp$, there exist a polynomial path of degree at most $3$ and a polygonal path consisting of at most three segments.
We define a support variety for a finitely generated module over an artin algebra $\Lambda$ over a commutative artinian ring $k$, with $\Lambda$ flat as a module over $k$, in terms of the maximal ideal spectrum of the algebra ${\rm HH}^*(\Lambda)$ of $\Lambda$. This is modelled on what is done in modular representation theory, and the varieties defined in this way are shown to have many of the same properties as those for group rings. In fact the notions of a variety in our sense and those for principal and non-principal blocks are related by a finite surjective map of varieties. For a finite-dimensional self-injective algebra over a field, the variety is shown to be an invariant of the stable component of the Auslander–Reiten quiver. Moreover, we give information on nilpotent elements in ${\rm HH}^*(\Lambda)$, give a thorough discussion of the ring ${\rm HH}^*(\Lambda)$ on a class of Nakayama algebras, give a brief discussion of a possible notion of complexity, and make a comparison with support varieties for complete intersections.
We prove that if φ is an (anti-) automorphism of a ring R with finite orbits on R, or integral over the integers, and if R contains a finite maximal φ-invariant subring, then R must be finite. Special cases are when φ has finite order or is an involution. Two corollaries are that R must be finite when R contains only finitely many φ-invariant subrings or has both ascending and descending chain conditions on φ invariant subrings. These generalize results in the literature for the special case when φ = idR.
For a module M Over an Artin algebra R, we discuss the question of whether the Yoneda extension algebra Ext(M, M) is finitely generated as an algebra. We give an answer for bounded modules M. (These are modules whose syzygies have direct summands of bounded lengths.)
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.