We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
in a symmetric monoidal $(\infty ,2)$-category $\mathscr{E}$ where $X,Y\in \mathscr{E}$ are dualizable objects and $\unicode[STIX]{x1D711}$ admits a right adjoint we construct a natural morphism $\mathsf{Tr}_{\mathscr{E}}(F_{X})\xrightarrow[{}]{~~~~~}\mathsf{Tr}_{\mathscr{E}}(F_{Y})$ between the traces of $F_{X}$ and $F_{Y}$, respectively. We then apply this formalism to the case when $\mathscr{E}$ is the $(\infty ,2)$-category of $k$-linear presentable categories which in combination of various calculations in the setting of derived algebraic geometry gives a categorical proof of the classical Atiyah–Bott formula (also known as the Holomorphic Lefschetz fixed point formula).
In this paper it is shown how nonpointed exactness provides a framework which allows a simple categorical treatment of the basics of Kurosh–Amitsur radical theory in the nonpointed case. This is made possible by a new approach to semi-exactness, in the sense of the first author, using adjoint functors. This framework also reveals how categorical closure operators arise as radical theories.
A total category is constructed which has no regular generator although it has an object C such that every object is a regular quotient of a copower of C.
We answer the following problem posed by Herrlich in the affirmative: “Can the Freudenthal compactification be regarded as a reflection in a sensible way?” This is accomplished by exploiting the one-to-one correspondence between proximities compatible with a given Tihonov space and compactifications of that space. We give topological characterizations of proximally continuous functions for the proximities associated with the Freudenthal and Fan-Gottesman compactifications.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.