We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a totally disconnected, locally compact group. A closed subgroup of $G$ is locally normal if its normalizer is open in $G$. We begin an investigation of the structure of the family of closed locally normal subgroups of $G$. Modulo commensurability, this family forms a modular lattice ${\mathcal{L}}{\mathcal{N}}(G)$, called the structure lattice of $G$. We show that $G$ admits a canonical maximal quotient $H$ for which the quasicentre and the abelian locally normal subgroups are trivial. In this situation ${\mathcal{L}}{\mathcal{N}}(H)$ has a canonical subset called the centralizer lattice, forming a Boolean algebra whose elements correspond to centralizers of locally normal subgroups. If $H$ is second-countable and acts faithfully on its centralizer lattice, we show that the topology of $H$ is determined by its algebraic structure (and thus invariant by every abstract group automorphism), and also that the action on the Stone space of the centralizer lattice is universal for a class of actions on profinite spaces. Most of the material is developed in the more general framework of Hecke pairs.
Let $S={\mathop{\rm Sym}(\Omega)$ be the group of all permutations of an infinite set $\Omega$. Extending an argument of Macpherson and Neumann, it is shown that if $U$ is a generating set for $S$ as a group, then there exists a positive integer $n$ such that every element of $S$ may be written as a group word of length at most $n$ in the elements of $U$. Likewise, if $U$ is a generating set for $S$ as a monoid, then there exists a positive integer $n$ such that every element of $S$ may be written as a monoid word of length at most $n$ in the elements of $U$. Some related questions and recent results are noted, and a brief proof is given of a result of Ore's on commutators, which is used in the proof of the above result.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.