We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We shall define a general notion of dimension, and study groups and rings whose interpretable sets carry such a dimension. In particular, we deduce chain conditions for groups, definability results for fields and domains, and show that a pseudofinite
$\widetilde {\mathfrak M}_c$
-group of finite positive dimension contains a finite-by-abelian subgroup of positive dimension, and a pseudofinite group of dimension 2 contains a soluble subgroup of dimension 2.
This paper continues the investigation of the structure of uncountable groups whose large subgroups are normal. Moreover, we describe the behaviour of uncountable groups in which every large subgroup is close to normal with the only obstruction of a finite section.
Let γn = [x1,…,xn] be the nth lower central word. Denote by Xn the set of γn -values in a group G and suppose that there is a number m such that $|{g^{{X_n}}}| \le m$ for each g ∈ G. We prove that γn+1(G) has finite (m, n) -bounded order. This generalizes the much-celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite.
If $\mathfrak{X}$ is a class of groups, we define a sequence $\mathfrak{X}_{1},\mathfrak{X}_{2},\ldots ,\mathfrak{X}_{k},\ldots$ of group classes by putting $\mathfrak{X}_{1}=\mathfrak{X}$ and choosing $\mathfrak{X}_{k+1}$ as the class of all groups whose nonnormal subgroups belong to $\mathfrak{X}_{k}$. In particular, if $\mathfrak{A}$ is the class of abelian groups, $\mathfrak{A}_{2}$ is the class of metahamiltonian groups, that is, groups whose nonnormal subgroups are abelian. The aim of this paper is to study the structure of $\mathfrak{X}_{k}$-groups, with special emphasis on the case $\mathfrak{X}=\mathfrak{A}$. Among other results, it will be proved that a group has a finite commutator subgroup if and only if it is locally graded and belongs to $\mathfrak{A}_{k}$ for some positive integer $k$.
A group G has restricted centralizers if for each g in G the centralizer $C_G(g)$ either is finite or has finite index in G. A theorem of Shalev states that a profinite group with restricted centralizers is abelian-by-finite. In the present paper we handle profinite groups with restricted centralizers of word-values. We show that if w is a multilinear commutator word and G a profinite group with restricted centralizers of w-values, then the verbal subgroup w(G) is abelian-by-finite.
We extend some results known for FC-groups to the class FC* of generalized FC-groups introduced in de Giovanni et al. [‘Groups with restricted conjugacy classes’, Serdica Math. J.28(3) (2002), 241–254]. The main theorems pertain to the join of pronormal subgroups. The relevant role that the Wielandt subgroup plays in an FC*-group is pointed out.
The paper has two objectives. On the one hand, we study left Haar null sets, a measure-theoretic notion of smallness on Polish, not necessarily locally compact, groups. On the other hand, we introduce and investigate two classes of Polish groups which are closely related to this notion and to amenability. We show that left Haar null sets form a $\sigma$-ideal and have the Steinhaus property on Polish groups which are ‘amenable at the identity’, and that they lose these two properties in the presence of appropriately embedded free subgroups. As an application we prove an automatic continuity result for universally measurable homomorphisms from inverse limits of sequences of amenable, locally compact, second countable groups to second countable groups.
A study is made of groups with finitely many derived groups of subgroups or of infinite subgroups. These groups are classified completely in the locally graded case. In the general case, detailed structural information about groups in each class is found.
In this article the following are proved: 1. Let $G$ be an infinite $p$-group of cardinality either ${\bf {\mathbb N}_{0}}$ or greater than $2^{\bf {\mathbb N}_{0}}$. If $G$ is center-by-finite and non-$\skew5\check{C}$ernikov, then it is non-co-Hopfian; that is, $G$ is isomorphic to a proper subgroup of itself. 2. Let $G$ be a nilpotent $p$-group of class $2$ with $G/G'$ a non-$\skew5\check{C}$ernikov group of cardinality ${\bf {\mathbb N}_{0}}$ or greater than $2^{{\bf {\mathbb N}_{0}}}$. If $G'$ is of order $p$, then $G$ is non-co-Hopfian.
A group G has all of its subgroups normal-by-finite if H / coreG(H) is finite for all subgroups H of G. These groups can be quite complicated in general, as is seen from the so-called Tarski groups. However, the locally finite groups of this type are shown to be abelian-by-finite; and they are then boundedly core-finite, that is to say, there is a bound depending on G only for the indices | H: coreG(H)|.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.