We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hardin and Taylor proved that any function on the reals—even a nowhere continuous one—can be correctly predicted, based solely on its past behavior, at almost every point in time. They showed that one could even arrange for the predictors to be robust with respect to simple time shifts, and asked whether they could be robust with respect to other, more complicated time distortions. This question was partially answered by Bajpai and Velleman, who provided upper and lower frontiers (in the subgroup lattice of $\mathrm{Homeo}^+(\mathbb {R})$) on how robust a predictor can possibly be. We improve both frontiers, some of which reduce ultimately to consequences of Hölder’s Theorem (that every Archimedean group is abelian).
Furstenberg has associated to every topological group $G$ a universal boundary $\unicode[STIX]{x2202}(G)$. If we consider in addition a subgroup $H<G$, the relative notion of $(G,H)$-boundaries admits again a maximal object $\unicode[STIX]{x2202}(G,H)$. In the case of discrete groups, an equivalent notion was introduced by Bearden and Kalantar (Topological boundaries of unitary representations. Preprint, 2019, arXiv:1901.10937v1) as a very special instance of their constructions. However, the analogous universality does not always hold, even for discrete groups. On the other hand, it does hold in the affine reformulation in terms of convex compact sets, which admits a universal simplex $\unicode[STIX]{x1D6E5}(G,H)$, namely the simplex of measures on $\unicode[STIX]{x2202}(G,H)$. We determine the boundary $\unicode[STIX]{x2202}(G,H)$ in a number of cases, highlighting properties that might appear unexpected.
A metric space $\text{M=}\left( M;\text{d} \right)$ is homogeneous if for every isometry $f$ of a finite subspace of $\text{M}$ to a subspace of $\text{M}$ there exists an isometry of $\text{M}$ onto $\text{M}$ extending $f$. The space $\text{M}$ is universal if it isometrically embeds every finite metric space $\text{F}$ with $\text{dist}\left( \text{F} \right)\subseteq \text{dist}\left( \text{M} \right)$ (with $\text{dist}\left( \text{M} \right)$ being the set of distances between points in $\text{M}$).
A metric space $U$ is a Urysohn metric space if it is homogeneous, universal, separable, and complete. (We deduce as a corollary that a Urysohn metric space $U$ isometrically embeds every separable metric space $\text{M}$ with $\text{dist}\left( \text{M} \right)\subseteq \text{dist}\left( U \right)$.)
The main results are: (1) A characterization of the sets $\text{dist}\left( U \right)$ for Urysohn metric spaces $U$. (2) If $R$ is the distance set of a Urysohn metric space and $\text{M}$ and $\text{N}$ are two metric spaces, of any cardinality with distances in $R$, then they amalgamate disjointly to a metric space with distances in $R$. (3) The completion of every homogeneous, universal, separable metric space $\text{M}$ is homogeneous.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.