We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This work focuses on the ongoing research of lineability (the search for large linear structures within certain non-linear sets) in non-Archimedean frameworks. Among several other results, we show that there exist large linear structures inside each of the following sets: (i) functions with a fixed closed subset of continuity, (ii) all continuous functions that are not Darboux continuous (or vice versa), (iii) all functions whose Dieudonné integral does not behave as an antiderivative, and (iv) functions with finite range and having antiderivative.
In this article, we study the commutativity between the pull-back and the push-forward functors on constructible functions in Cluckers–Loeser motivic integration.
We relate Popper functions to regular and perfectly additive such non-Archimedean probability functions by means of a representation theorem: every such non-Archimedean probability function is infinitesimally close to some Popper function, and vice versa. We also show that regular and perfectly additive non-Archimedean probability functions can be given a lexicographic representation. Thus Popper functions, a specific kind of non-Archimedean probability functions, and lexicographic probability functions triangulate to the same place: they are in a good sense interchangeable.
The General Curve Lemma is a tool of Infinite-Dimensional Analysis that enables refined studies of differentiability properties of maps between real locally convex spaces to be made. In this article, we generalize the General Curve Lemma in two ways. First, we remove the condition of local convexity in the real case. Second, we adapt the lemma to the case of curves in topological vector spaces over ultrametric fields.
We show that every countable direct system of finite-dimensional real or complex Lie groups has a direct limit in the category of Lie groups modelled on locally convex spaces. This enables us to push all basic constructions of finite-dimensional Lie theory to the case of direct limit groups. In particular, we obtain an analogue of Lie's third theorem: every countable-dimensional locally finite real or complex Lie algebra arises as the Lie algebra of some regular Lie group (a suitable direct limit group).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.