We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate different geometrical properties, related to Carleson measures and pseudo-hyperbolic separation, of inhomogeneous Poisson point processes on the unit disk. In particular, we give conditions so that these random sequences are almost surely interpolating for the Hardy, Bloch or weighted Dirichlet spaces.
Classical results about peaking from complex interpolation theory are extended to polynomials on a closed disk, and on the complement of its interior. New results are obtained concerning interpolation by univalent polynomials on a Jordan domain whose boundary satisfies certain smoothness conditions.
This paper presents an approach, based on interpolation theory of operators, to the study of interpolating sequences for interpolation Banach spaces between Hardy spaces. It is shown that the famous Carleson result for H∞ can be lifted to a large class of abstract Hardy spaces. A description is provided of the range of the Carleson operator defined on interpolation spaces between the classical Hardy spaces in terms of uniformly separated sequences. A key role in this description is played by some general interpolation results proved in the paper. As by-products, novel results are obtained which extend the Shapiro–Shields result on the characterisation of interpolation sequences for the classical Hardy spaces Hp. Applications to Hardy–Lorentz, Hardy–Marcinkiewicz and Hardy–Orlicz spaces are presented.
We present a new connection between the Hele-Shaw flow, also known as two-dimensional Laplacian growth, and the theory of holomorphic discs with boundary contained in a totally real submanifold. Using this, we prove short-time existence and uniqueness of the Hele-Shaw flow with varying permeability both when starting from a single point and also when starting from a smooth Jordan domain. Applying the same ideas, we prove that the moduli space of smooth quadrature domains is a smooth manifold whose dimension we also calculate, and we give a local existence theorem for the inverse potential problem in the plane.
Necessary and sufficient conditions for the incompleteness of exponential system in Cα are characterised, where Cα is the weighted Banach space of complex continuous functions f defined on ℝn with f(t)exp(−α(t)) vanishing at infinity in the uniform norm.
We complete the investigation of growth properties of analytic functions connected with the Nevanlinna parametrization of the solutions of an indeterminate strong Hamburger moment problem.
In this paper we study interpolating sequences for two related spaces of holomorphic functions in the unit ball of ${{\mathbb{C}}^{n}},\,n\,>\,1$. We first give density conditions for a sequence to be interpolating for the class ${{A}^{-\infty }}$ of holomorphic functions with polynomial growth. The sufficient condition is formally identical to the characterizing condition in dimension 1, whereas the necessary one goes along the lines of the results given by Li and Taylor for some spaces of entire functions. In the second part of the paper we show that a density condition, which for $n\,=\,1$ coincides with the characterizing condition given by Seip, is sufficient for interpolation in the (weighted) Bergman space.
We study Gevrey classes of holomorphic functions of several variables on a polysector, and their relation to classes of Gevrey strongly asymptotically developable functions. A new Borel-Ritt-Gevrey interpolation problem is formulated, and its solution is obtained by the construction of adequate linear continuous extension operators. Our results improve those given by Haraoka in this context, and extend to several variables the one-dimensional versions of the Borel-Ritt-Gevrey theorem given by Ramis and Thilliez, respectively. Some rigidity properties for the constructed operators are stated.
We develop a method for deriving integral representations of certain orthogonal polynomials as moments. These moment representations are applied to find linear and multilinear generating functions for $q$-orthogonal polynomials. As a byproduct we establish new transformation formulas for combinations of basic hypergeometric functions, including a new representation of the $q$-exponential function $\text{ }{{\varepsilon }_{q}}$.
We show that the Meixner, Pollaczek, Meixner-Pollaczek, the continuous q-ultraspherical polynomials and Al-Salam-Chihara polynomials, in certain normalization, are moments of probability measures.We use this fact to derive bilinear and multilinear generating functions for some of these polynomials. We also comment on the corresponding formulas for the Charlier, Hermite and Laguerre polynomials.
A necessary and sufficient geometric characterization and a necessary and sufficient analytic characterization of interpolating varieties for the space of entire functions will be obtained in the paper, which as an application will also give a generalization of the well-known Pólya-Levinson density theorem.
It is shown that, if F and G are inner functions, (H2 ⊖ FH2)/(H2 ⊖ FH2) ∩ GH2 is n-dimensional if and only if G is a Blaschke product of degree n. This is an extension of the well known result for the case (H2 ⊖ FH2) ∩ GH2 = {0}.
We pose a “moment problem” in a more general setting than the classical one. Then we find a necessary and sufficient condition for a sequence to have a solution of the “problem“
where σ is a “distribution function”.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.