We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a reduced hyperplane arrangement, we prove the analytic Twisted Logarithmic Comparison Theorem, subject to mild combinatorial arithmetic conditions on the weights defining the twist. This gives a quasi-isomorphism between the twisted logarithmic de Rham complex and the twisted meromorphic de Rham complex. The latter computes the cohomology of the arrangement’s complement with coefficients from the corresponding rank one local system. We also prove the algebraic variant (when the arrangement is central), and the analytic and algebraic (untwisted) Logarithmic Comparison Theorems. The last item positively resolves an old conjecture of Terao. We also prove that: Every nontrivial rank one local system on the complement can be computed via these Twisted Logarithmic Comparison Theorems; these computations are explicit finite-dimensional linear algebra. Finally, we give some $\mathscr {D}_{X}$-module applications: For example, we give a sharp restriction on the codimension one components of the multivariate Bernstein–Sato ideal attached to an arbitrary factorization of an arrangement. The bound corresponds to (and, in the univariate case, gives an independent proof of) M. Saito’s result that the roots of the Bernstein–Sato polynomial of a non-smooth, central, reduced arrangement live in $(-2 + 1/d, 0).$
Vanishing cycles, introduced over half a century ago, are a fundamental tool for studying the topology of complex hypersurface singularity germs, as well as the change in topology of a degenerating family of projective manifolds. More recently, vanishing cycles have found deep applications in enumerative geometry, representation theory, applied algebraic geometry, birational geometry, etc. In this survey, we introduce vanishing cycles from a topological perspective and discuss some of their applications.
We study the singularity at the origin of $\mathbb{C}^{n+1}$ of an arbitrary homogeneous polynomial in $n+1$ variables with complex coefficients, by investigating the monodromy characteristic polynomials $\unicode[STIX]{x1D6E5}_{l}(t)$ as well as the relation between the monodromy zeta function and the Hodge spectrum of the singularity. In the case $n=2$, we give a description of $\unicode[STIX]{x1D6E5}_{C}(t)=\unicode[STIX]{x1D6E5}_{1}(t)$ in terms of the multiplier ideal.
We define and study twisted Alexander-type invariants of complex hypersurface complements. We investigate torsion properties for the twisted Alexander modules and extend the local-to-global divisibility results of Maxim and of Dimca and Libgober to the twisted setting. In the process, we also study the splitting fields containing the roots of the corresponding twisted Alexander polynomials.
We compute the Alexander polynomial of a nonreduced nonirreducible complex projective plane curve with mutually coprime orders of vanishing along its irreducible components in terms of certain multiplier ideals.
The detection of the bifurcation set of polynomial mapping ℝn → ℝp, n ⩾ p, in more than two variables remains an unsolved problem. In this note we provide a solution for n = p + 1 ⩾ 3.
We show that on the Hilbert scheme of n points on ℂ2, the hyperkähler metric constructed by Nakajima via hyperkähler reduction is the quasi-asymptotically locally Euclidean (QALE) metric constructed by Joyce.
We describe explicitly the Voevodsky's triangulated category of motives (and give a ‘differential graded enhancement’ of it). This enables us to able to verify that DMgm ℚ is (anti)isomorphic to Hanamura's (k).
We obtain a description of all subcategories (including those of Tate motives) and of all localizations of . We construct a conservative weight complex functor ; t gives an isomorphism . A motif is mixed Tate whenever its weight complex is. Over finite fields the Beilinson–Parshin conjecture holds if and only if tℚ is an equivalence.
For a realization D of we construct a spectral sequence S (the spectral sequence of motivic descent) converging to the cohomology of an arbitrary motif X. S is ‘motivically functorial’; it gives a canonical functorial weight filtration on the cohomology of D(X). For the ‘standard’ realizations this filtration coincides with the usual one (up to a shift of indices). For the motivic cohomology this weight filtration is non-trivial and appears to be quite new.
We define the (rational) length of a motif M; modulo certain ‘standard’ conjectures this length coincides with the maximal length of the weight filtration of the singular cohomology of M.
In this article, we prove that a free divisor in a three-dimensional complex manifold must be Euler homogeneous in a strong sense if the cohomology of its complement is the hypercohomology of its logarithmic differential forms. Calderón-Moreno et al. conjectured this implication in all dimensions and proved it in dimension two. We prove a theorem that describes in all dimensions a special minimal system of generators for the module of formal logarithmic vector fields. This formal structure theorem is closely related to the formal decomposition of a vector field by Kyoji Saito and is used in the proof of the above result. Another consequence of the formal structure theorem is that the truncated Lie algebras of logarithmic vector fields up to dimension three are solvable. We give an example that this may fail in higher dimensions.
In the late 1980s, Vassiliev introduced new graded numerical invariants of knots, which are now called Vassiliev invariants or finite-type invariants. Since he made this definition, many people have been trying to construct Vassiliev type invariants for various mapping spaces. In the early 1990s, Arnold and Goryunov introduced the notion of first order (local) invariants of stable maps. In this paper, we define and study {\it first order semi-local invariants} of stable maps and those of stable fold maps of a closed orientable 3-dimensional manifold into the plane. We show that there are essentially eight first order semi-local invariants. For a stable map, one of them is a constant invariant, six of them count the number of singular fibers of a given type which appear discretely (there are exactly six types of such singular fibers), and the last one is the Euler characteristic of the Stein factorization of this stable map. Besides these invariants, for stable fold maps, the Bennequin invariant of the singular value set corresponding to definite fold points is also a first order semi-local invariant. Our study of unstable fold maps with codimension 1 provides invariants for the connected components of the set of all fold maps.
We prove a generalization to the context of real geometry of an intersection formula for the vanishing cycle functor, which in the complex context is due to Dubson, Lê, Ginsburg and Sabbah (after a conjecture of Deligne). It is also a generalization of similar results of Kashiwara and Schapira, where these authors work with a suitable assumption about the micro-support of the corresponding constructible complex of sheaves. We only use a similar assumption about the support of the corresponding characteristic cycle so that our result can be formulated in the language of constructible functions and Lagrangian cycles.
The definition of Thom polynomials for Lagrange, Legendre and critical point function singularities is given. The approach is based on the notion of classifying space of singularities. This approach provides a universal method for computing Thom polynomials. Characteristic classes of complex Lagrange and Legendre singularities of small codimension are computed. Two independent methods for these computations are presented. The first is the direct one based on the resolution of singularities, the Gysin homomorphism, and the notion of adjacency exponents. The second uses the existence theorem for Thom polynomials and is based on Rimányi's idea of using symmetries. The expressions for the resulting polynomials reduced modulo 2 agree with those obtained by Vassiliev for the real case.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.