We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we are interested in investigating notions of stability for generalized linear differential equations (GLDEs). Initially, we propose and revisit several definitions of stability and provide a complete characterization of them in terms of upper bounds and asymptotic behaviour of the transition matrix. In addition, we illustrate our stability results for GLDEs to linear periodic systems and linear impulsive differential equations. Finally, we prove that the well-known definitions of uniform asymptotic stability and variational asymptotic stability are equivalent to the global uniform exponential stability introduced in this article.
Sufficient conditions are obtained for the oscillation of a general form of a linear second-order differential equation with discontinuous solutions. The innovations are that the impulse effects are in mixed form and the results obtained are applicable even if the impulses are small. The novelty of the results is demonstrated by presenting an example of an oscillating equation to which previous oscillation theorems fail to apply.
In this paper we apply fixed point results in ordered spaces to derive existence and comparison results for discontinuous functional integral equations of Volterra type in ordered Banach spaces. The results obtained are then applied to first order impulsive differential equations.
In this paper, extending the results in [ 1 ], we establish a necessary and sufficient condition for oscillation in a large class of singular (i.e., the difference operator is nonatomic) neutral equations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.