We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a class of optimal control problems for measure-valued nonlinear transport equations describing traffic flow problems on networks. The objective is to minimise/maximise macroscopic quantities, such as traffic volume or average speed, controlling few agents, e.g. smart traffic lights and automated cars. The measure theoretic approach allows to study in a same setting local and non-local drivers interactions and to consider the control variables as additional measures interacting with the drivers distribution. We also propose a gradient descent adjoint-based optimisation method, obtained by deriving first-order optimality conditions for the control problem, and we provide some numerical experiments in the case of smart traffic lights for a 2–1 junction.
In this article, a fully discrete finite element approximation is investigated for constrained parabolic optimal control problems with time-dependent coefficients. The spatial discretisation invokes finite elements, and the time discretisation a nonstandard backward Euler method. On introducing some appropriate intermediate variables and noting properties of the L2 projection and the elliptic projection, we derive the superconvergence for the control, the state and the adjoint state. Finally, we discuss some numerical experiments that illustrate our theoretical results.
A quadratic optimal control problem governed by parabolic equations with integral constraints is considered. A fully discrete finite element scheme is constructed for the optimal control problem, with finite elements for the spatial but the backward Euler method for the time discretisation. Some superconvergence results of the control, the state and the adjoint state are proved. Some numerical examples are performed to confirm theoretical results.
This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints. The time discretization is based on the backward Euler method. The state and the adjoint state are approximated by piece-wise linear functions and the control is approximated by piecewise constant functions. We derive the superconvergence properties of finite element solutions. By using the superconvergence results, we obtain recovery type a posteriori error estimates. Some numerical examples are presented to verify the theoretical results.
We prove an uniform Hölder continuity of the resolvent of the Laplace-Beltrami operator on the real axis for a class of asymptotically Euclidean Riemannian manifolds. As an application we extend a result of Burq on the behaviour of the local energy of solutions to the wave equation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.