We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This project uses methods in geometric analysis to study almost complex manifolds. We introduce the notion of biharmonic almost complex structure on a compact almost Hermitian manifold and study its regularity and existence in dimension four. First, we show that there always exists smooth energy-minimizing biharmonic almost-complex structures for any almost Hermitian four manifold. Then, we study the existence problem where the homotopy class is specified. Given a homotopy class
$[\tau ]$
of an almost complex structure, using the fact
$\pi _4(S^2)=\mathbb {Z}_2$
, there exists a canonical operation p on the homotopy classes satisfying
$p^2=\text {id}$
such that
$p([\tau ])$
and
$[\tau ]$
have the same first Chern class. We prove that there exists an energy-minimizing biharmonic almost complex structure in the companion homotopy classes
$[\tau ]$
and
$p([\tau ])$
. Our results show that, When M is simply connected, there exists an energy-minimizing biharmonic almost complex structure in the homotopy classes with the given first Chern class.
We consider the minimizing problem for the energy functional with prescribed mass constraint related to the fractional non-linear Schrödinger equation with periodic potentials. Using the concentration-compactness principle, we show a complete classification for the existence and non-existence of minimizers for the problem. In the mass-critical case, under a suitable assumption of the potential, we give a detailed description of blow-up behaviour of minimizers once the mass tends to a critical value.
We prove existence and multiplicity of solutions for the problem
$$\left\{ {\matrix{ {\Delta ^2u + \lambda \Delta u = \vert u \vert ^{2*-2u},{\rm in }\Omega ,} \hfill \hfill \hfill \hfill \cr {u,-\Delta u > 0,\quad {\rm in}\;\Omega ,\quad u = \Delta u = 0,\quad {\rm on}\;\partial \Omega ,} \cr } } \right.$$
where $\Omega \subset {\open R}^N$, $N \ges 5$, is a bounded regular domain, $\lambda >0$ and $2^*=2N/(N-4)$ is the critical Sobolev exponent for the embedding of $W^{2,2}(\Omega )$ into the Lebesgue spaces.
This paper deals with the class of Schrödinger–Kirchhoff-type biharmonic problems
where Δ2 denotes the biharmonic operator, and f ∈ C(ℝN × ℝ, ℝ) satisfies the Ambrosetti–Rabinowitz-type conditions. Under appropriate assumptions on V and f, the existence of infinitely many solutions is proved by using the symmetric mountain pass theorem.
In this paper, a novel approach for quantifying the parametric uncertainty associated with a stochastic problem output is presented. As with Monte-Carlo and stochastic collocation methods, only point-wise evaluations of the stochastic output response surface are required allowing the use of legacy deterministic codes and precluding the need for any dedicated stochastic code to solve the uncertain problem of interest. The new approach differs from these standard methods in that it is based on ideas directly linked to the recently developed compressed sensing theory. The technique allows the retrieval of the modes that contribute most significantly to the approximation of the solution using a minimal amount of information. The generation of this information, via many solver calls, is almost always the bottle-neck of an uncertainty quantification procedure. If the stochastic model output has a reasonably compressible representation in the retained approximation basis, the proposed method makes the best use of the available information and retrieves the dominant modes. Uncertainty quantification of the solution of both a 2-D and 8-D stochastic Shallow Water problem is used to demonstrate the significant performance improvement of the new method, requiring up to several orders of magnitude fewer solver calls than the usual sparse grid-based Polynomial Chaos (Smolyak scheme) to achieve comparable approximation accuracy.
Let Ω be a smooth bounded domain in RN, with N ≥ 5. We provide existence and bifurcation results for the elliptic fourth-order equation Δ2u − Δpu = f(λ, x, u) in Ω, under the Dirichlet boundary conditions u = 0 and ∇u = 0. Here λ is a positive real number, 1 < p ≤ 2# and f(.,., u) has a subcritical or a critical growth s, 1 < s ≤ 2*, where and . Our approach is variational, and it is based on the mountain-pass theorem, the Ekeland variational principle and the concentration-compactness principle.
It is well known that higher-order linear elliptic equations with measurable coefficients and higher-order nonlinear elliptic equations with analytic coefficients can admit unbounded solutions, unlike their second-order counterparts. In this work we introduce the concept of approximate truncates for functions in higher-order Sobolev spaces and prove that if a solution of a higher-order linear elliptic equation has an approximate truncate somewhere then it is bounded there.
We consider a semilinear elliptic problem , (n > 2m). Under suitable conditions on f, we show the existence of a decaying positive solution. We do not employ radial arguments. Our main tools are weighted spaces, various applications of the Mountain Pass Theorem and LP regularity estimates of Agmon. We answer an open question of Kusano, Naito and Swanson [Canad. J. Math. 40(1988), 1281-1300] in the superlinear case: , and improve the results of Dalmasso [C. R. Acad. Sci. Paris 308(1989), 411-414] for the case .
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.