We study a 3D ternary system which combines an interface energy with a long-range interaction term. Several such systems were derived as a sharp-interface limit of the Nakazawa–Ohta density functional theory of triblock copolymers. Both the binary case in 2D and 3D, and the ternary case in 2D, are quite well understood, whereas very little is known about the ternary case in 3D. In particular, it is even unclear whether minimizers are made of finitely many components. In this paper, we provide a positive answer to this, by proving that the number of components in a minimizer is bounded from above by a computable quantity depending only on the total masses and the interaction coefficients. There are two key difficulties, namely, the impossibility to decouple the long-range interaction from the perimeter term, and the absence of a quantitative isoperimetric inequality with two mass constraints in 3D. Therefore, the actual shape of minimizers is unknown, even for small masses, making the construction of suitable competing configurations significantly more delicate.