This paper deals with the global existence and blow-up properties of the following non-Newton polytropic filtration system coupled with local source: ut − Δm,pu = avα, vt − Δn,qv = buβ. Under appropriate hypotheses, we prove that the solution either exists globally or blows up in finite time depending on the initial data and the relations between αβ and mn(p − 1)(q − 1).