We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Reflection in a strictly convex bounded planar billiard acts on the space of oriented lines and preserves a standard area form. A caustic is a curve C whose tangent lines are reflected by the billiard to lines tangent to C. The famous Birkhoff conjecture states that the only strictly convex billiards with a foliation by closed caustics near the boundary are ellipses. By Lazutkin’s theorem, there always exists a Cantor family of closed caustics approaching the boundary. In the present paper, we deal with an open billiard, whose boundary is a strictly convex embedded (non-closed) curve $\gamma $. We prove that there exists a domain U adjacent to $\gamma $ from the convex side and a $C^\infty $-smooth foliation of $U\cup \gamma $ whose leaves are $\gamma $ and (non-closed) caustics of the billiard. This generalizes a previous result by Melrose on the existence of a germ of foliation as above. We show that there exists a continuum of above foliations by caustics whose germs at each point in $\gamma $ are pairwise different. We prove a more general version of this statement for $\gamma $ being an (immersed) arc. It also applies to a billiard bounded by a closed strictly convex curve $\gamma $ and yields infinitely many ‘immersed’ foliations by immersed caustics. For the proof of the above results, we state and prove their analogue for a special class of area-preserving maps generalizing billiard reflections: the so-called $C^{\infty }$-lifted strongly billiard-like maps. We also prove a series of results on conjugacy of billiard maps near the boundary for open curves of the above type.
We prove that every non-degenerate Reeb flow on a closed contact manifold M admitting a strong symplectic filling W with vanishing first Chern class carries at least two geometrically distinct closed orbits provided that the positive equivariant symplectic homology of W satisfies a mild condition. Under further assumptions, we establish the existence of two geometrically distinct closed orbits on any contact finite quotient of M. Several examples of such contact manifolds are provided, like displaceable ones, unit cosphere bundles, prequantisation circle bundles, Brieskorn spheres and toric contact manifolds. We also show that this condition on the equivariant symplectic homology is preserved by boundary connected sums of Liouville domains. As a byproduct of one of our applications, we prove a sort of Lusternik–Fet theorem for Reeb flows on the unit cosphere bundle of not rationally aspherical manifolds satisfying suitable additional assumptions.
We address the problem of computing the fundamental group of a symplectic ${{S}^{1}}$-manifold for non-Hamiltonian actions on compact manifolds, and for Hamiltonian actions on non-compact manifolds with a proper moment map. We generalize known results for compact manifolds equipped with a Hamiltonian ${{S}^{1}}$-action. Several examples are presented to illustrate our main results.
We prove that a Hamiltonian
$p\in {{C}^{\infty }}({{T}^{*}}{{\mathbf{R}}^{n}})$
is locally integrable near a non-degenerate critical point
${{\rho }_{0}}$
of the energy, provided that the fundamental matrix at
${{\rho }_{0}}$
has rationally independent eigenvalues, none purely imaginary. This is done by using Birkhoff normal forms, which turn out to be convergent in the
${{C}^{\infty }}$
sense. We also give versions of the Lewis-Sternberg normal form near a hyperbolic fixed point of a canonical transformation. Then we investigate the complex case, showing that when $p$ is holomorphic near
${{\rho }_{0}}\in {{T}^{*}}{{\mathbf{C}}^{n}},$ then Re $p$ becomes integrable in the complex domain for real times, while the Birkhoff series and the Birkhoff transforms may not converge, i.e.,$p$ may not be integrable. These normal forms also hold in the semi-classical frame.
In this article we are concerned with how to compute the cohomology ring of a symplectic quotient by a circle action using the information we have about the cohomology of the original manifold and some data at the fixed point set of the action. Our method is based on the Tolman-Weitsman theorem which gives a characterization of the kernel of the Kirwan map. First we compute a generating set for the kernel of the Kirwan map for the case of product of compact connected manifolds such that the cohomology ring of each of them is generated by a degree two class. We assume the fixed point set is isolated; however the circle action only needs to be “formally Hamiltonian”. By identifying the kernel, we obtain the cohomology ring of the symplectic quotient. Next we apply this result to some special cases and in particular to the case of products of two dimensional spheres. We show that the results of Kalkman and Hausmann-Knutson are special cases of our result.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.