We consider the self-adjoint second-order scalar difference equation (1) Δ(rnΔxn) +pnXn+1 = 0 and the matrix system (2) Δ(RnΔXn) + PnXn+1 = 0, where are seQuences of real numbers (d x d Hermitian matrices) with rn > 0(Rn > 0). The oscillation and nonoscillation criteria for solutions of (1) and (2), obtained in [3, 4, 10], are extended to a much wider class of equations by Riccati and averaging techniques.