We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate quantum group generalizations of various density results from Fourier analysis on compact groups. In particular, we establish the density of characters in the space of fixed points of the conjugation action on ${{L}^{2}}(\mathbb{G})$ and use this result to show the $\text{wea}{{\text{k}}^{\star }}$ density and normal density of characters in $Z{{L}^{\infty }}(\mathbb{G})$ and $ZC(\mathbb{G})$, respectively. As a corollary, we partially answer an open question of Woronowicz. At the level of ${{L}^{1}}(\mathbb{G})$, we show that the center $~z({{L}^{1}}(\mathbb{G}))$ is precisely the closed linear span of the quantum characters for a large class of compact quantum groups, including arbitrary compact Kac algebras. In the latter setting, we show, in addition, that $~z({{L}^{1}}(\mathbb{G}))$ is a completely complemented $~z({{L}^{1}}(\mathbb{G}))$-submodule of ${{L}^{2}}(\mathbb{G})$.
This paper introduces a unified operator theory approach to the abstract Plancherel (trace) formulas over homogeneous spaces of compact groups. Let $G$ be a compact group and let $H$ be a closed subgroup of $G$. Let ${G}/{H}\;$ be the left coset space of $H$ in $G$ and let $\mu$ be the normalized $G$-invariant measure on ${G}/{H}\;$ associated with Weil’s formula. Then we present a generalized abstract notion of Plancherel (trace) formula for the Hilbert space ${{L}^{2}}\left( {G}/{H,\,\mu }\; \right)$.
We characterize dual spaces and compute hyperdimensions of irreducible representations for two classes of compact hypergroups namely conjugacy classes of compact groups and compact hypergroups constructed by joining compact and finite hypergroups. Also, studying the representation theory of finite hypergroups, we highlight some interesting differences and similarities between the representation theories of finite hypergroups and finite groups. Finally, we compute the Heisenberg inequality for compact hypergroups.
Leaning on a remarkable paper of Pryce, the paper studies two independent classes of topological Abelian groups which are strictly angelic when endowed with their Bohr topology. Some extensions are given of the Eberlein–šmulyan theorem for the class of topological Abelian groups, and finally, for a large subclass of the latter, Bohr angelicity is related to the Schur property.
A compact hypergroup is called almost discrete if it is homeomorphic to the one-point-compactification of a countably infinite discrete set. If the group Up of all p-adic units acts multiplicatively on the p-adic integers, then the associated compact orbit hypergroup has this property. In this paper we start with an exact projective sequence of finite hypergroups and use successive substitution to construct a new surjective projective system of finite hypergroups whose limit is almost discrete. We prove that all compact almost discrete hypergroups appear in this way—up to isomorphism and up to a technical restriction. We also determine the duals of these hypergroups, and we present some examples coming from partitions of compact totally disconnected groups.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.