We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend the full wavefield modeling with forward scattering theory and Volterra Renormalization to a vertically varying two-parameter (velocity and density) acoustic medium. The forward scattering series, derived by applying Born-Neumann iterative procedure to the Lippmann-Schwinger equation (LSE), is a well known tool for modeling and imaging. However, it has limited convergence properties depending on the strength of contrast between the actual and reference medium or the angle of incidence of a plane wave component. Here, we introduce the Volterra renormalization technique to the LSE. The renormalized LSE and related Neumann series are absolutely convergent for any strength of perturbation and any incidence angle. The renormalized LSE can further be separated into two sub-Volterra type integral equations, which are then solved noniteratively. We apply the approach to velocity-only, density-only, and both velocity and density perturbations. We demonstrate that this Volterra Renormalization modeling is a promising and efficient method. In addition, it can also provide insight for developing a scattering theory-based direct inversion method.
A spectral Jacobi-collocation approximation is proposed for Volterra delay integro-differential equations with weakly singular kernels. In this paper, we consider the special case that the underlying solutions of equations are sufficiently smooth. We provide a rigorous error analysis for the proposed method, which shows that both the errors of approximate solutions and the errors of approximate derivatives decay exponentially in L∞ norm and weighted L2 norm. Finally, two numerical examples are presented to demonstrate our error analysis.
Our main purpose in this paper is to propose the piecewise Legendre spectral-collocation method to solve Volterra integro-differential equations. We provide convergence analysis to show that the numerical errors in our method decay in $h^{m}N^{-m}$-version rate. These results are better than the piecewise polynomial collocation method and the global Legendre spectral-collocation method. The provided numerical examples confirm these theoretical results.
Using Krasnoselskii’s fixed point theorem, we deduce the existence of periodic solutions of nonlinear system of integro-dynamic equations on periodic time scales. These equations are studied under a set of assumptions on the functions involved in the equations. The equations will be called almost linear when these assumptions hold. The results of this paper are new for the continuous and discrete time scales.
Let A and M be closed linear operators defined on a complex Banach space X and let a ∈ L1(ℝ+) be a scalar kernel. We use operator-valued Fourier multipliers techniques to obtain necessary and sufficient conditions to guarantee the existence and uniqueness of periodic solutions to the equation
with initial condition Mu(0) = Mu(2π), solely in terms of spectral properties of the data. Our results are obtained in the scales of periodic Besov, Triebel–Lizorkin and Lebesgue vector-valued function spaces.
In this paper we study the existence of periodic solutions of a Volterra type integral equation with infinite heredity. Banach fixed point theorem, Krasnosel'skii's fixed point theorem, and a combination of Krasnosel'skii's and Schaefer's fixed point theorems are employed in the analysis. The combination theorem of Krasnosel'skii and Schaefer requires an a priori bound on all solutions. We employ Liapunov's direct method to obtain such an a priori bound. In the process, we compare these theorems in terms of assumptions and outcomes.
In this paper we deal with an M/G/1 vacation system with the sojourn time (wait plus service) limit and two typical vacation rules, i.e. multiple and single vacation rules. Using the level crossing approach, we derive recursive equations for the steady-state distributions of the virtual waiting times in M/G/1 vacation systems with a general vacation time and two vacation rules.
In this paper we deal with an M/G/1 vacation system with the sojourn time (wait plus service) limit and two typical vacation rules, i.e. multiple and single vacation rules. Using the level crossing approach, explicit expressions for the steady-state distributions of the virtual waiting times are obtained in vacation systems with exponential and constant service times, a general vacation time, and two vacation rules.
We introduce the principal matrix solution Z(t, s) of the linear Volterra-type vector integro-dynamic equation
and prove that it is the unique matrix solution of
We also show that the solution of
is unique and given by the variation of parameters formula
Reflected Brownian motion is used in areas such as physiology, electrochemistry and nuclear magnetic resonance. We study the first-passage-time problem of this process which is relevant in applications; specifically, we find a Volterra integral equation for the distribution of the first time that a reflected Brownian motion reaches a nondecreasing barrier. Additionally, we note how a numerical procedure can be used to solve the integral equation.
We consider a linear integrodifferential equation of second order in a Hilbert space and show that the solution tends to zero polynomially if the decay of the convolution kernel is polynomial. Both polynomials are of the same order.
In this paper we apply fixed point results in ordered spaces to derive existence and comparison results for discontinuous functional integral equations of Volterra type in ordered Banach spaces. The results obtained are then applied to first order impulsive differential equations.
Operator-valued Fourier multiplier theorems are used to establish maximal regularity results for an integro-differential equation with infinite delay in Banach spaces. Results are obtained under general conditions for periodic solutions in the vector-valued Lebesgue and Besov spaces. The latter scale includes in particular the Hölder spaces $C^{\alpha},\,0\,{<}\, \alpha \,{<}\, 1 .$
In this paper, some new results concerning the existence and uniqueness of nontrivial solutions to nonlinear Volterra integral equations with convolution kernels are presented.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.