We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a connected open subset Ω of the plane and n a positive integer, let be the space introduced by Cowen and Douglas in their paper, “Complex geometry and operator theory”. Our main concern is the case n = 1, in which case we show the existence of a functional calculus for von Neumann operators in for which a spectral mapping theorem holds. In particular we prove that if the spectrum of , is a spectral set for T, and if , then σ(f(T)) = f(Ω)- for every bounded analytic function f on the interior of L, where L is compact, σ(T) ⊂ L, the interior of L is simply connected and L is minimal with respect to these properties. This functional calculus turns out to be nice in the sense that the general study of von Neumann operators in is reduced to the special situation where Ω is an open connected subset of the unit disc with .
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.