We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
One of the useful features of spectral measures which happen to be equicontinuous is that their associated integration maps are bicontinuous isomorphisms of the corresponding L1-space onto their ranges. It is shown here that equicontinuity is not necessary for this to be the case; a somewhat weaker property suffices. This is of some interest in practice since there are many natural examples of spectral measures which fail to be equiconontinuous.
Let $\text{Alg}\left( \mathcal{L} \right)$ be the algebra of all bounded linear operators on a normed linear space $\mathcal{X}$ leaving invariant each member of the complete lattice of closed subspaces $\mathcal{L}$. We discuss when the subalgebra of finite rank operators in $\text{Alg}\left( \mathcal{L} \right)$ is non-zero, and give an example which shows this subalgebra may be zero even for finite lattices. We then give a necessary and sufficient lattice condition for decomposing a finite rank operator $F$ into a sum of a rank one operator and an operator whose range is smaller than that of $F$, each of which lies in $\text{Alg}\left( \mathcal{L} \right)$. This unifies results of Erdos, Longstaff, Lambrou, and Spanoudakis. Finally, we use the existence of finite rank operators in certain algebras to characterize the spectra of Riesz operators (generalizing results of Ringrose and Clauss) and compute the Jacobson radical for closed algebras of Riesz operators and $\text{Alg}\left( \mathcal{L} \right)$ for various types of lattices.
In this note we prove that one aspect of the similarity theory, for the Volterra nest in Lp(0,1 ) for 1 < p ≠ 2 < ∞, is like that for p = 1 ; we thus answer a question from [ALWW].
Let H be a Hilbert space, dim H ≥ 3, and B(H) the algebra of all bounded linear operators on H. We characterize bijective linear mappings on B(H) that preserve normal operators.
It is proved that linear mappings of matrix algebras which preserve idempotents are Jordan homomorphisms. Applying this theorem we get some results concerning local derivations and local automorphisms. As an another application, the complete description of all weakly continuous linear surjective mappings on standard operator algebras which preserve projections is obtained. We also study local ring derivations on commutative semisimple Banach algebras.
Let X be a Banach space and let A be a uniformly closed algebra of compact operators on X, containing the finite rank operators. We set up a general framework to discuss the equivalence between Banach space approximation properties and the existence of right approximate identities in A. The appropriate properties require approximation in the dual X* by operators which are adjoints of operators on X. We show that the existence of a bounded right approximate identity implies that of a bounded left approximate identity. We give examples to show that these properties are not equivalent, however. Finally, we discuss the well known result that, if X* has a basis, then X has a shrinking basis. We make some attempts to generalize this to various bounded approximation properties.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.