Given n distinct points
$\mathbf {x}_1, \ldots , \mathbf {x}_n$
in
$\mathbb {R}^d$
, let K denote their convex hull, which we assume to be d-dimensional, and
$B = \partial K $
its
$(d-1)$
-dimensional boundary. We construct an explicit, easily computable one-parameter family of continuous maps
$\mathbf {f}_{\varepsilon } \colon \mathbb {S}^{d-1} \to K$
which, for
$\varepsilon> 0$
, are defined on the
$(d-1)$
-dimensional sphere, and whose images
$\mathbf {f}_{\varepsilon }({\mathbb {S}^{d-1}})$
are codimension
$1$
submanifolds contained in the interior of K. Moreover, as the parameter
$\varepsilon $
goes to
$0^+$
, the images
$\mathbf {f}_{\varepsilon } ({\mathbb {S}^{d-1}})$
converge, as sets, to the boundary B of the convex hull. We prove this theorem using techniques from convex geometry of (spherical) polytopes and set-valued homology. We further establish an interesting relationship with the Gauss map of the polytope B, appropriately defined. Several computer plots illustrating these results are included.