We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Monotone paths on zonotopes and the natural generalization to maximal chains in the poset of topes of an oriented matroid or arrangement of pseudo-hyperplanes are studied with respect to a kind of local move, called polygon move or flip. It is proved that any monotone path on a $d$-dimensional zonotope with $n$ generators admits at least $\left\lceil 2n/\left( n-d+2 \right) \right\rceil -1$ flips for all $n\ge d+2\ge 4$ and that for any fixed value of $n-d$, this lower bound is sharp for infinitely many values of $n$. In particular, monotone paths on zonotopes which admit only three flips are constructed in each dimension $d\ge 3$. Furthermore, the previously known 2-connectivity of the graph of monotone paths on a polytope is extended to the 2-connectivity of the graph of maximal chains of topes of an oriented matroid. An application in the context of Coxeter groups of a result known to be valid for monotone paths on simple zonotopes is included.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.