We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
By use of a natural extension map and a power series method, we obtain a local stability theorem for $p$-Kähler structures with the $(p,p+1)$th mild $\unicode[STIX]{x2202}\overline{\unicode[STIX]{x2202}}$-lemma under small differentiable deformations.
Let $X$ be a compact Kähler manifold and $\{\unicode[STIX]{x1D703}\}$ be a big cohomology class. We prove several results about the singularity type of full mass currents, answering a number of open questions in the field. First, we show that the Lelong numbers and multiplier ideal sheaves of $\unicode[STIX]{x1D703}$-plurisubharmonic functions with full mass are the same as those of a current with minimal singularities. Second, given another big and nef class $\{\unicode[STIX]{x1D702}\}$, we show the inclusion ${\mathcal{E}}(X,\unicode[STIX]{x1D702})\cap \operatorname{PSH}(X,\unicode[STIX]{x1D703})\subset {\mathcal{E}}(X,\unicode[STIX]{x1D703})$. Third, we characterize big classes whose full mass currents are ‘additive’. Our techniques make use of a characterization of full mass currents in terms of the envelope of their singularity type. As an essential ingredient we also develop the theory of weak geodesics in big cohomology classes. Numerous applications of our results to complex geometry are also given.
We present the classification of all real hypersurfaces in complex hyperbolic space $\mathbb{C}H^{n}$, $n \geq 3$, with three distinct constant principal curvatures.