We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the question of when a rational homology $3$-sphere is rational homology cobordant to a connected sum of lens spaces. We prove that every rational homology cobordism class in the subgroup generated by lens spaces is represented by a unique connected sum of lens spaces whose first homology group injects in the first homology group of any other element in the same class. As a first consequence, we show that several natural maps to the rational homology cobordism group have infinite-rank cokernels. Further consequences include a divisibility condition between the determinants of a connected sum of $2$-bridge knots and any other knot in the same concordance class. Lastly, we use knot Floer homology combined with our main result to obstruct Dehn surgeries on knots from being rationally cobordant to lens spaces.
We show that standard cyclic actions on Brieskorn homology 3-spheres with non-empty fixed set do not extend smoothly to any contractible smooth 4-manifold it may bound. The quotient of any such extension would be an acyclic 4-manifold with boundary a related Brieskorn homology sphere. We briefly discuss well-known invariants of homology spheres that obstruct acyclic bounding 4-manifolds and then use a method based on equivariant Yang–Mills moduli spaces to rule out extensions of the actions.
We calculate the group of homotopy classes of homotopy self-equivalences of 4-manifolds with free fundamental group and obtain a classification of such 4-manifolds up to s-cobordism.
If P is a closed 3-manifold the covering space associated to a finitely presentable subgroup ν of infinite index in π1(P) is finitely dominated if and only if P is aspherical or . There is a corresponding result in dimension 4, under further hypotheses on π and ν. In particular, if M is a closed 4-manifold, ν is an ascendant, FP3, finitely-ended subgroup of infinite index in π1(M), π is virtually torsion free and the associated covering space is finitely dominated then either M is aspherical or or S3. In the aspherical case such an ascendant subgroup is usually Z, a surface group or a PD3-group.
Nous démontrons que tous les plongements d’une variété compacte sans bord et simplement connexe de dimension quatre dans la sphère de dimension six sont concordants.
We construct an orientable ribbon surface $F \subset B^4$ which is universal in the following sense: any orientable 4-manifold $M \cong B^4 \cup \text{1-handles} \cup \text{2-handles}$ can be represented as a cover of $B^4$ branched over $F$.
Let X be a closed, oriented, smooth 4-manifold with a finite fundamental group and with a non-vanishing Seiberg-Witten invariant. Let G be a finite group. If G acts smoothly and freely on X, then the quotient X/G cannot be decomposed as X1#X2 with (Xi) > 0, i = 1, 2. In addition let X be symplectic and c1(X)2 > 0 and b+2(X) > 3. If σ is a free anti-symplectic involution on X then the Seiberg-Witten invariants on X/σ vanish for all spinc structures on X/σ, and if η is a free symplectic involution on X then the quotients X/σ and X/η are not diffeomorphic to each other.
Uncountable collections of continua of dimension m embeddable in En are investigated, where the difference between m and n is not restricted to one. Collections of isometric copies of continua equivalent to Menger universal continua and collections of continua analogous to G. S. Young's Tn-sets are the main considerations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.