We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the topological structure of the space $\mathcal{X}$ of isomorphism classes of metric measure spaces equipped with the box or concentration topologies. We consider the scale-change action of the multiplicative group ${\mathbb{R}}_+$ of positive real numbers on $\mathcal{X}$, which has a one-point metric measure space, say $*$, as only one fixed-point. We prove that the ${\mathbb{R}}_+$-action on $\mathcal{X}_* := \mathcal{X} \setminus \{*\}$ admits the structure of non-trivial and locally trivial principal ${\mathbb{R}}_+$-bundle over the quotient space. Our bundle ${\mathbb{R}}_+ \to \mathcal{X}_* \to \mathcal{X}_*/{\mathbb{R}}_+$ is a curious example of a non-trivial principal fibre bundle with contractible fibre. A similar statement is obtained for the pyramidal compactification of $\mathcal{X}$, where we completely determine the structure of the fixed-point set of the ${\mathbb{R}}_+$-action on the compactification.
We show that if an open set in $\mathbb{R}^d$ can be fibered by unit n-spheres, then $d \geq 2n+1$, and if $d = 2n+1$, then the spheres must be pairwise linked, and $n \in \left\{0, 1, 3, 7 \right\}$. For these values of n, we construct unit n-sphere fibrations in $\mathbb{R}^{2n+1}$.
We construct a ring homomorphism comparing the tautological ring, fixing a point, of a closed smooth manifold with that of its stabilisation by S2a×S2b.
We extend two known existence results to simply connected manifolds with positive sectional curvature: we show that there exist pairs of simply connected positively-curved manifolds that are tangentially homotopy equivalent but not homeomorphic, and we deduce that an open manifold may admit a pair of non-homeomorphic simply connected and positively-curved souls. Examples of such pairs are given by explicit pairs of Eschenburg spaces. To deduce the second statement from the first, we extend our earlier work on the stable converse soul question and show that it has a positive answer for a class of spaces that includes all Eschenburg spaces.
For $p\ge 2$ we introduce the notion of an almost $p$-structure on vector-bundles which generalizes the notion of an almost-complex structure and investigate the existence of almost $p$-structures on spheres and complex projective spaces.
compact Riemannian 4-symmetric space M can be regarded as a fibre bundle over a Riemannian 2-symmetric space with totally geodesic fibres isometric to a 2-symmetric space. Here the result of R. Crittenden for conjugate and cut points in a 2-symmetric space is extended to the focal points of the fibres of M. Also the restriction of the exponential map of M up to the first focal locus in the normal bundle of a fibre is proved to yield a covering map onto its image. It is shown that for the noncompact dual M*, the fibres have no focal points and hence the exponential map of M* restricted to the normal bundle of a fibre is a covering map. The classification of the compact simply connected 4-symmetric spaces G/L with G classical simple provides a large class of examples of these fibrations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.