We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\pi$ be a discrete group, and let $G$ be a compact-connected Lie group. Then, there is a map $\Theta \colon \mathrm {Hom}(\pi,G)_0\to \mathrm {map}_*(B\pi,BG)_0$ between the null components of the spaces of homomorphisms and based maps, which sends a homomorphism to the induced map between classifying spaces. Atiyah and Bott studied this map for $\pi$ a surface group, and showed that it is surjective in rational cohomology. In this paper, we prove that the map $\Theta$ is surjective in rational cohomology for $\pi =\mathbb {Z}^m$ and the classical group $G$ except for $SO(2n)$, and that it is not surjective for $\pi =\mathbb {Z}^m$ with $m\ge 3$ and $G=SO(2n)$ with $n\ge 4$. As an application, we consider the surjectivity of the map $\Theta$ in rational cohomology for $\pi$ a finitely generated nilpotent group. We also consider the dimension of the cokernel of the map $\Theta$ in rational homotopy groups for $\pi =\mathbb {Z}^m$ and the classical groups $G$ except for $SO(2n)$.
Multiplicative constants are a fundamental tool in the study of maximal representations. In this paper, we show how to extend such notion, and the associated framework, to measurable cocycles theory. As an application of this approach, we define and study the Cartan invariant for measurable
$\mathrm{PU}(m,1)$
-cocycles of complex hyperbolic lattices.
We determine the (non-)triviality of Samelson products of inclusions of factors of the mod p decomposition of $G_{(p)}$ for $(G,p)=(E_7,5),(E_7,7),(E_8,7)$. This completes the determination of the (non-)triviality of those Samelson products in p-localized exceptional Lie groups when G has p-torsion-free homology.
Lazard showed in his seminal work (Groupes analytiques p-adiques, Publ. Math. Inst. Hautes Études Sci. 26 (1965), 389–603) that for rational coefficients, continuous group cohomology of p-adic Lie groups is isomorphic to Lie algebra cohomology. We refine this result in two directions: first, we extend Lazard’s isomorphism to integral coefficients under certain conditions; and second, we show that for algebraic groups over finite extensions K/ℚp, his isomorphism can be generalized to K-analytic cochains andK-Lie algebra cohomology.
It is shown that the mod $3$ cohomology of a $1$-connected, homotopy associative mod $3$$H$-space that is rationally equivalent to the Lie group $E_6$ is isomorphic to that of $E_6$ as an algebra. Moreover, it is shown that the mod $3$ cohomology of a nilpotent, homotopy-associative mod $3$$H$-space that is rationally equivalent to $E_6$, and whose fundamental group localized at $3$ is non-trivial, is isomorphic to that of the Lie group $\Ad E_6$ as a Hopf algebra over the mod $3$ Steenrod algebra. It is also shown that the mod $3$ cohomology of the universal cover of such an $H$-space is isomorphic to that of $E_6$ as a Hopf algebra over the mod $3$ Steenrod algebra.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.