Szekeres defined a continuous analogue of the additive ordinary continued fraction expansion, which iterates a map T on a domain which can be identified with the unit square [0, 1]2. Associated to it are continuous analogues of the Lagrange and Markoff spectrum. Our main result is that these are identical with the usual Lagrange and Markoff spectra, respectively; thus providing an alternative characterization of them.
Szekeres also described a multi-dimensional analogue of T, which iterates a map Td on a higherdimensional domain; he proposed using it to bound d-dimensional Diophantine approximation constants. We formulate several open problems concerning the Diophantine approximation properties of the map Td.